Department of Chemistry, University of Wisconsin, Madison, WI 53706.
Theoretical Chemistry Institute, University of Wisconsin, Madison, WI 53706.
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8830-E8836. doi: 10.1073/pnas.1707922114. Epub 2017 Oct 2.
Cytochrome oxidase (CcO) is a transmembrane protein that uses the free energy of O reduction to generate the proton concentration gradient across the membrane. The regulation of competitive proton transfer pathways has been established to be essential to the vectorial transport efficiency of CcO, yet the underlying mechanism at the molecular level remains lacking. Recent studies have highlighted the potential importance of hydration-level change in an internal cavity that connects the proton entrance channel, the site of O reduction, and the putative proton exit route. In this work, we use atomistic molecular dynamics simulations to investigate the energetics and timescales associated with the volume fluctuation and hydration-level change in this central cavity. Extensive unrestrained molecular dynamics simulations (accumulatively [Formula: see text]4 [Formula: see text]s) and free energy computations for different chemical states of CcO support a model in which the volume and hydration level of the cavity are regulated by the protonation state of a propionate group of heme a and, to a lesser degree, the redox state of heme a and protonation state of Glu286. Markov-state model analysis of [Formula: see text]2-[Formula: see text]s trajectories suggests that hydration-level change occurs on the timescale of 100-200 ns before the proton-loading site is protonated. The computed energetic and kinetic features for the cavity wetting transition suggest that reversible hydration-level change of the cavity can indeed be a key factor that regulates the branching of proton transfer events and therefore contributes to the vectorial efficiency of proton transport.
细胞色素氧化酶(CcO)是一种跨膜蛋白,它利用 O 还原的自由能在膜两侧产生质子浓度梯度。已经确定,竞争性质子转移途径的调节对于 CcO 的定向转运效率至关重要,但分子水平的潜在机制仍缺乏研究。最近的研究强调了连接质子入口通道、O 还原部位和假定质子出口途径的内部腔体内的水合水平变化的潜在重要性。在这项工作中,我们使用原子分子动力学模拟来研究与该中心腔体内的体积波动和水合水平变化相关的能量学和时间尺度。对 CcO 的不同化学状态进行广泛的无约束分子动力学模拟(累积 [Formula: see text]4 [Formula: see text]s)和自由能计算支持了这样一种模型,即腔的体积和水合水平由血红素 a 的丙酸盐基团的质子化状态以及较小程度上由血红素 a 的氧化还原状态和 Glu286 的质子化状态来调节。对 [Formula: see text]2-[Formula: see text]s 轨迹的 Markov 状态模型分析表明,在质子加载位点质子化之前,水合水平变化发生在 100-200 ns 的时间尺度上。计算出的腔润湿转变的能量学和动力学特征表明,腔的可逆水合水平变化确实可以成为调节质子转移事件分支的关键因素,从而有助于质子转运的定向效率。