Suppr超能文献

一种基于变分自编码器的高效路径分类算法,用于识别复杂构象变化的亚稳路径通道。

An Efficient Path Classification Algorithm Based on Variational Autoencoder to Identify Metastable Path Channels for Complex Conformational Changes.

作者信息

Qiu Yunrui, O'Connor Michael S, Xue Mingyi, Liu Bojun, Huang Xuhui

机构信息

Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.

出版信息

J Chem Theory Comput. 2023 Jul 25;19(14):4728-4742. doi: 10.1021/acs.jctc.3c00318. Epub 2023 Jun 29.

Abstract

Conformational changes (i.e., dynamic transitions between pairs of conformational states) play important roles in many chemical and biological processes. Constructing the Markov state model (MSM) from extensive molecular dynamics (MD) simulations is an effective approach to dissect the mechanism of conformational changes. When combined with transition path theory (TPT), MSM can be applied to elucidate the ensemble of kinetic pathways connecting pairs of conformational states. However, the application of TPT to analyze complex conformational changes often results in a vast number of kinetic pathways with comparable fluxes. This obstacle is particularly pronounced in heterogeneous self-assembly and aggregation processes. The large number of kinetic pathways makes it challenging to comprehend the molecular mechanisms underlying conformational changes of interest. To address this challenge, we have developed a path classification algorithm named latent-space path clustering (LPC) that efficiently lumps parallel kinetic pathways into distinct metastable path channels, making them easier to comprehend. In our algorithm, MD conformations are first projected onto a low-dimensional space containing a small set of collective variables (CVs) by time-structure-based independent component analysis (tICA) with kinetic mapping. Then, MSM and TPT are constructed to obtain the ensemble of pathways, and a deep learning architecture named the variational autoencoder (VAE) is used to learn the spatial distributions of kinetic pathways in the continuous CV space. Based on the trained VAE model, the TPT-generated ensemble of kinetic pathways can be embedded into a latent space, where the classification becomes clear. We show that LPC can efficiently and accurately identify the metastable path channels in three systems: a 2D potential, the aggregation of two hydrophobic particles in water, and the folding of the Fip35 WW domain. Using the 2D potential, we further demonstrate that our LPC algorithm outperforms the previous path-lumping algorithms by making substantially fewer incorrect assignments of individual pathways to four path channels. We expect that LPC can be widely applied to identify the dominant kinetic pathways underlying complex conformational changes.

摘要

构象变化(即构象状态对之间的动态转变)在许多化学和生物过程中发挥着重要作用。通过广泛的分子动力学(MD)模拟构建马尔可夫状态模型(MSM)是剖析构象变化机制的有效方法。当与过渡路径理论(TPT)相结合时,MSM可用于阐明连接构象状态对的动力学路径系综。然而,将TPT应用于分析复杂的构象变化通常会导致大量具有相当通量的动力学路径。这一障碍在异质自组装和聚集过程中尤为明显。大量的动力学路径使得理解感兴趣的构象变化背后的分子机制具有挑战性。为了应对这一挑战,我们开发了一种名为潜在空间路径聚类(LPC)的路径分类算法,该算法能够有效地将平行的动力学路径归并为不同的亚稳路径通道,使其更易于理解。在我们的算法中,首先通过基于时间结构的独立成分分析(tICA)和动力学映射,将MD构象投影到包含一小组集体变量(CVs)的低维空间中。然后,构建MSM和TPT以获得路径系综,并使用名为变分自编码器(VAE)的深度学习架构来学习连续CV空间中动力学路径的空间分布。基于训练好的VAE模型,TPT生成的动力学路径系综可以嵌入到一个潜在空间中,在该空间中分类变得清晰。我们表明,LPC能够在三个系统中高效且准确地识别亚稳路径通道:二维势场、水中两个疏水颗粒的聚集以及Fip35 WW结构域的折叠。使用二维势场,我们进一步证明,我们的LPC算法通过将单个路径错误分配到四个路径通道的情况大幅减少,优于先前的路径归并算法。我们期望LPC能够广泛应用于识别复杂构象变化背后的主导动力学路径。

相似文献

9
Explore Protein Conformational Space With Variational Autoencoder.使用变分自编码器探索蛋白质构象空间。
Front Mol Biosci. 2021 Nov 12;8:781635. doi: 10.3389/fmolb.2021.781635. eCollection 2021.

引用本文的文献

7
Information Bottleneck Approach for Markov Model Construction.信息瓶颈方法在马尔可夫模型构建中的应用。
J Chem Theory Comput. 2024 Jun 25;20(12):5352-5367. doi: 10.1021/acs.jctc.4c00449. Epub 2024 Jun 10.
9
Data-driven classification of ligand unbinding pathways.基于数据驱动的配体解离途径分类
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2313542121. doi: 10.1073/pnas.2313542121. Epub 2024 Feb 27.
10
LPATH: A Semiautomated Python Tool for Clustering Molecular Pathways.LPATH:一种用于聚类分子途径的半自动化 Python 工具。
J Chem Inf Model. 2023 Dec 25;63(24):7610-7616. doi: 10.1021/acs.jcim.3c01318. Epub 2023 Dec 4.

本文引用的文献

5
CATBOSS: Cluster Analysis of Trajectories Based on Segment Splitting.基于分段拆分的轨迹聚类分析。
J Chem Inf Model. 2021 Oct 25;61(10):5066-5081. doi: 10.1021/acs.jcim.1c00598. Epub 2021 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验