文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过软骨形成预处理和机械刺激对基于间充质干细胞的软骨再生的协同作用。

Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation.

机构信息

Department of Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China.

Department of Pharmacology and Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China.

出版信息

Stem Cell Res Ther. 2017 Oct 3;8(1):221. doi: 10.1186/s13287-017-0672-5.


DOI:10.1186/s13287-017-0672-5
PMID:28974254
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5627486/
Abstract

BACKGROUND: Mesenchymal stem cells (MSCs) hold promising translational potential in cartilage regeneration. However, the efficacy of MSC-based tissue engineering is not satisfactory in the treatment of cartilage defect because of the inevitable cellular functional changes during ex vivo cell expansion. How to maintain the chondrogenic capacity of MSCs to improve their therapeutic outcomes remains an outstanding question. METHODS: Bone marrow-derived MSCs were firstly primed in chondrogenic induction medium which was then replaced with normal growth medium to attain the manipulated cells (M-MSCs). Methacrylated hyaluronic acid (MeHA) was synthesized as a scaffold to encapsulate the cells. The MSC- or M-MSC-laden constructs were treated with dynamic compressive loading (DL) in a bioreactor or with free loading (FL) for 14 days. Afterwards, the constructs were implanted in nude mice or rat models of osteochondral defects to test their efficiency in cartilage regeneration or repair. RESULTS: Data showed that the resulting M-MSCs exhibited superior chondrogenic differentiation potential and survivability compared with untreated MSCs. More importantly, we found that DL significantly promoted neocartilage formation in the MeHA hydrogel encapsulated with M-MSCs after 30 days of implantation in nude mice. Furthermore, the constructs laden with M-MSCs after DL for 14 days significantly enhanced cartilage healing in a rat model of osteochondral defect. CONCLUSIONS: Findings from this study highlight the importance of maintaining chondrogenic potential of MSCs by in-vitro chondrogenic preconditioning and a synergistic effect of mechanical stimulation in cartilage engineering, which may shed light on the stem cell-based tissue engineering for cartilage repair.

摘要

背景:间充质干细胞(MSCs)在软骨再生方面具有很有前景的转化潜力。然而,由于体外细胞扩增过程中不可避免的细胞功能变化,基于 MSC 的组织工程的疗效并不理想。如何保持 MSC 的软骨生成能力以提高其治疗效果仍然是一个悬而未决的问题。

方法:首先将骨髓来源的 MSCs 在软骨诱导培养基中预培养,然后用普通生长培养基替代,以获得经过处理的细胞(M-MSCs)。合成甲基丙烯酰化透明质酸(MeHA)作为支架来包封细胞。将 MSC 或 M-MSC 负载的构建体在生物反应器中进行动态压缩加载(DL)或自由加载(FL)处理 14 天。然后,将构建体植入裸鼠或骨软骨缺损大鼠模型中,以测试它们在软骨再生或修复方面的效率。

结果:数据表明,与未经处理的 MSC 相比,所得的 M-MSCs 表现出更高的软骨分化潜能和存活率。更重要的是,我们发现,在裸鼠体内植入 30 天后,DL 显著促进了 MeHA 水凝胶中包封的 M-MSCs 形成新生软骨。此外,经过 14 天的 DL 处理后负载 M-MSCs 的构建体显著增强了骨软骨缺损大鼠模型中的软骨愈合。

结论:本研究的结果强调了通过体外软骨预培养和机械刺激的协同作用来维持 MSC 的软骨生成潜能的重要性,这可能为基于干细胞的软骨修复组织工程提供启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/d1f96c572ae1/13287_2017_672_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/60a067438f99/13287_2017_672_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/1465b53e4e24/13287_2017_672_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/6f0cdedb5718/13287_2017_672_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/0358aa6d2fad/13287_2017_672_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/6919b28d24ac/13287_2017_672_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/a884782c6b7a/13287_2017_672_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/d1f96c572ae1/13287_2017_672_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/60a067438f99/13287_2017_672_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/1465b53e4e24/13287_2017_672_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/6f0cdedb5718/13287_2017_672_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/0358aa6d2fad/13287_2017_672_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/6919b28d24ac/13287_2017_672_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/a884782c6b7a/13287_2017_672_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6695/5627486/d1f96c572ae1/13287_2017_672_Fig7_HTML.jpg

相似文献

[1]
Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation.

Stem Cell Res Ther. 2017-10-3

[2]
Cartilage regeneration using arthroscopic flushing fluid-derived mesenchymal stem cells encapsulated in a one-step rapid cross-linked hydrogel.

Acta Biomater. 2018-8-28

[3]
Cartilage tissue engineering by co-transplantation of chondrocyte extracellular vesicles and mesenchymal stem cells, entrapped in chitosan-hyaluronic acid hydrogel.

Biomed Mater. 2021-7-13

[4]
Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.

Biotechnol Bioeng. 2006-4-20

[5]
Repair of Osteochondral Defects With Predifferentiated Mesenchymal Stem Cells of Distinct Phenotypic Character Derived From a Nanotopographic Platform.

Am J Sports Med. 2020-3-19

[6]
Articular Cartilage Repair with Mesenchymal Stem Cells After Chondrogenic Priming: A Pilot Study.

Tissue Eng Part A. 2017-11-30

[7]
Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in a simulated osteochondral environment is hydrogel dependent.

Eur Cell Mater. 2014-2-3

[8]
In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells.

BMC Musculoskelet Disord. 2011-1-31

[9]
Cartilage Repair Using Composites of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Hyaluronic Acid Hydrogel in a Minipig Model.

Stem Cells Transl Med. 2015-9

[10]
Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel.

Artif Organs. 2013-3-15

引用本文的文献

[1]
Effectiveness of combined regenerative medicine and exercise therapy for patients with knee osteoarthritis: a scoping review.

Front Rehabil Sci. 2025-7-22

[2]
Harnessing the potential of hyaluronic acid methacrylate (HAMA) hydrogel for clinical applications in orthopaedic diseases.

J Orthop Translat. 2025-1-8

[3]
Effects of different microfracture drilling parameters on bone quality: a finite element analysis.

Front Bioeng Biotechnol. 2025-1-8

[4]
Enhanced Chondrogenic Differentiation of Electrically Primed Human Mesenchymal Stem Cells for the Regeneration of Osteochondral Defects.

Biomater Res. 2024-12-18

[5]
Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells.

Biomacromolecules. 2024-10-14

[6]
The development, use, and challenges of electromechanical tissue stimulation systems.

Artif Organs. 2024-9

[7]
High Hopes for the Biofabrication of Articular Cartilage-What Lies beyond the Horizon of Tissue Engineering and 3D Bioprinting?

Biomedicines. 2024-3-15

[8]
Synthesis and Characterisation of Hydrogels Based on Poly (N-Vinylcaprolactam) with Diethylene Glycol Diacrylate.

Gels. 2023-5-25

[9]
Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy.

Adv Sci (Weinh). 2023-7

[10]
Progress in biomechanical stimuli on the cell-encapsulated hydrogels for cartilage tissue regeneration.

Biomater Res. 2023-3-20

本文引用的文献

[1]
Cartilage repair by mesenchymal stem cells: Clinical trial update and perspectives.

J Orthop Translat. 2017-4-9

[2]
Stepwise preconditioning enhances mesenchymal stem cell-based cartilage regeneration through epigenetic modification.

Osteoarthritis Cartilage. 2017-5-22

[3]
Environmental preconditioning rejuvenates adult stem cells' proliferation and chondrogenic potential.

Biomaterials. 2017-2

[4]
Hydrogels functionalized with N-cadherin mimetic peptide enhance osteogenesis of hMSCs by emulating the osteogenic niche.

Biomaterials. 2015-11-2

[5]
Epigenetic memory gained by priming with osteogenic induction medium improves osteogenesis and other properties of mesenchymal stem cells.

Sci Rep. 2015-6-8

[6]
Articular chondrocytes and mesenchymal stem cells seeded on biodegradable scaffolds for the repair of cartilage in a rat osteochondral defect model.

Biomaterials. 2014-8

[7]
Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic.

Stem Cells. 2014-7

[8]
The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy.

Biomaterials. 2012-10-22

[9]
Designing cell-compatible hydrogels for biomedical applications.

Science. 2012-6-1

[10]
Reliability, reproducibility, and validation of five major histological scoring systems for experimental articular cartilage repair in the rabbit model.

Tissue Eng Part C Methods. 2011-12-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索