Suppr超能文献

(杜纳尔)渗透脱水的优化

Optimization of osmotic dehydration of ( Dunal).

作者信息

Chiu Moi-Thin, Tham Heng Jin, Lee Jau-Shya

机构信息

Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah Malaysia.

Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah Malaysia.

出版信息

J Food Sci Technol. 2017 Sep;54(10):3327-3337. doi: 10.1007/s13197-017-2785-3. Epub 2017 Aug 22.

Abstract

This study was designed to determine the effect of osmotic dehydration (OD) process temperature (35-55 °C), sucrose concentration (40-60% w/w) and immersion time (90-210 min) on the water loss (WL), solid gain (SG), DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP) and sensory quality of the dehydrated slices. Response Surface Methodology with Central Composite Design was applied to investigate the influence of these variables on the aforementioned responses. The increase in the levels of these processing parameters increased the WL and SG. The antioxidant activities also increased with sugar concentration, but reduced with immersion time and temperature elevation. About 36-80% of IC and 47-72% of FRAP were depleted after osmotic process. The loss of antioxidants was predominantly due to leaching during osmotic treatment rather than hot air drying. Despite the losses of these compounds, osmotic pretreatment was able to improve the sensory quality of the product. The optimum OD process condition was predicted as process temperature 38.1 °C, sucrose concentration 55.6% and osmotic duration 126.3 min.

摘要

本研究旨在确定渗透脱水(OD)工艺温度(35 - 55°C)、蔗糖浓度(40 - 60% w/w)和浸渍时间(90 - 210分钟)对脱水切片的失水量(WL)、固形物增加量(SG)、DPPH自由基清除活性、铁还原抗氧化能力(FRAP)和感官品质的影响。采用中心复合设计的响应面法研究这些变量对上述响应的影响。这些加工参数水平的增加会提高WL和SG。抗氧化活性也随着糖浓度的增加而增加,但随着浸渍时间和温度升高而降低。渗透处理后,约36 - 80%的IC和47 - 72%的FRAP被消耗。抗氧化剂的损失主要是由于渗透处理过程中的浸出,而非热风干燥。尽管这些化合物有所损失,但渗透预处理能够改善产品的感官品质。预测的最佳OD工艺条件为工艺温度38.1°C、蔗糖浓度55.6%和渗透时间126.3分钟。

相似文献

1
Optimization of osmotic dehydration of ( Dunal).
J Food Sci Technol. 2017 Sep;54(10):3327-3337. doi: 10.1007/s13197-017-2785-3. Epub 2017 Aug 22.
2
Optimization of osmotic dehydration conditions of peach slices in sucrose solution using response surface methodology.
J Food Sci Technol. 2012 Oct;49(5):547-55. doi: 10.1007/s13197-011-0298-z. Epub 2011 Feb 6.
3
Use of coconut sugar as an alternative agent in osmotic dehydration of strawberries.
J Food Sci. 2023 Sep;88(9):3786-3806. doi: 10.1111/1750-3841.16715. Epub 2023 Jul 26.
4
Combined osmotic dehydration and drying process of pirarucu () fillets.
J Food Sci Technol. 2017 Sep;54(10):3170-3179. doi: 10.1007/s13197-017-2755-9. Epub 2017 Aug 8.
5
Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry.
Ultrason Sonochem. 2017 May;36:286-300. doi: 10.1016/j.ultsonch.2016.12.007. Epub 2016 Dec 7.
6
Optimization and modeling of vacuum impregnation of pineapple rings and comparison with osmotic dehydration.
J Food Sci. 2024 Jan;89(1):494-512. doi: 10.1111/1750-3841.16875. Epub 2023 Dec 21.
9
Evaluation of physicochemical, antioxidant, antibacterial activity, and sensory properties of watermelon rind candy.
Heliyon. 2023 Jun 14;9(6):e17300. doi: 10.1016/j.heliyon.2023.e17300. eCollection 2023 Jun.

引用本文的文献

1
Optimization of Osmotic Dehydration of Sapodilla ( L.).
Foods. 2022 Mar 10;11(6):794. doi: 10.3390/foods11060794.
3
Mass Transfer in Osmotic Dehydration of Kiwiberry: Experimental and Mathematical Modelling Studies.
Molecules. 2018 May 22;23(5):1236. doi: 10.3390/molecules23051236.

本文引用的文献

1
Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables.
J Food Sci Technol. 2016 Nov;53(11):4056-4066. doi: 10.1007/s13197-016-2412-8. Epub 2016 Nov 25.
2
Studies on Osmo-air dehydration of different Indian apricot (Prunus armeniaca L.) cultivars.
J Food Sci Technol. 2015 Jun;52(6):3794-802. doi: 10.1007/s13197-014-1443-2. Epub 2014 Jun 19.
3
Process optimization for osmo-dehydrated carambola (Averrhoa carambola L) slices and its storage studies.
J Food Sci Technol. 2014 Oct;51(10):2472-80. doi: 10.1007/s13197-012-0756-2. Epub 2012 Jun 26.
4
Effect of ultrasonic and osmotic dehydration pre-treatments on the colour of freeze dried strawberries.
J Food Sci Technol. 2014 Sep;51(9):2222-7. doi: 10.1007/s13197-012-0724-x. Epub 2012 May 22.
5
Drying kinetics and physico-chemical characteristics of Osmo- dehydrated Mango, Guava and Aonla under different drying conditions.
J Food Sci Technol. 2014 Aug;51(8):1540-6. doi: 10.1007/s13197-012-0658-3. Epub 2012 Feb 24.
6
The nutritional value of indigenous fruits and vegetables in Sarawak.
Asia Pac J Clin Nutr. 1999 Mar;8(1):24-31. doi: 10.1046/j.1440-6047.1999.00046.x.
7
Optimization of osmotic dehydration conditions of peach slices in sucrose solution using response surface methodology.
J Food Sci Technol. 2012 Oct;49(5):547-55. doi: 10.1007/s13197-011-0298-z. Epub 2011 Feb 6.
8
Optimization of process parameters for osmotic dehydration of papaya cubes.
J Food Sci Technol. 2011 Apr;48(2):211-7. doi: 10.1007/s13197-010-0161-7. Epub 2010 Nov 14.
9
Recent advances in drying and dehydration of fruits and vegetables: a review.
J Food Sci Technol. 2010 Jan;47(1):15-26. doi: 10.1007/s13197-010-0010-8. Epub 2010 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验