Suppr超能文献

基于稳健筛选方法的精油保留指数预测稀疏 QSRR 模型。

A sparse QSRR model for predicting retention indices of essential oils based on robust screening approach.

机构信息

a Department of Chemistry , Universiti Teknologi Malaysia , Johor , Malaysia.

b Department of Chemistry, Faculty of Science , Sana'a University , Sana'a , Yemen.

出版信息

SAR QSAR Environ Res. 2017 Aug;28(8):691-703. doi: 10.1080/1062936X.2017.1375010.

Abstract

A robust screening approach and a sparse quantitative structure-retention relationship (QSRR) model for predicting retention indices (RIs) of 169 constituents of essential oils is proposed. The proposed approach is represented in two steps. First, dimension reduction was performed using the proposed modified robust sure independence screening (MR-SIS) method. Second, prediction of RIs was made using the proposed robust sparse QSRR with smoothly clipped absolute deviation (SCAD) penalty (RSQSRR). The RSQSRR model was internally and externally validated based on [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], Y-randomization test, [Formula: see text], [Formula: see text], and the applicability domain. The validation results indicate that the model is robust and not due to chance correlation. The descriptor selection and prediction performance of the RSQSRR for training dataset outperform the other two used modelling methods. The RSQSRR shows the highest [Formula: see text], [Formula: see text], and [Formula: see text], and the lowest [Formula: see text]. For the test dataset, the RSQSRR shows a high external validation value ([Formula: see text]), and a low value of [Formula: see text] compared with the other methods, indicating its higher predictive ability. In conclusion, the results reveal that the proposed RSQSRR is an efficient approach for modelling high dimensional QSRRs and the method is useful for the estimation of RIs of essential oils that have not been experimentally tested.

摘要

提出了一种稳健的筛选方法和稀疏的定量结构-保留关系(QSRR)模型,用于预测 169 种精油成分的保留指数(RI)。该方法分为两步。首先,使用提出的改进稳健确定独立性筛选(MR-SIS)方法进行降维。其次,使用提出的具有平滑修剪绝对偏差(SCAD)惩罚的稳健稀疏 QSRR(RSQSRR)进行 RI 的预测。基于 [公式:见文本]、[公式:见文本]、[公式:见文本]、[公式:见文本]、Y 随机化测试、[公式:见文本]、[公式:见文本]和适用域对 RSQSRR 模型进行了内部和外部验证。验证结果表明该模型稳健,并非偶然相关。RSQSRR 对训练数据集的描述符选择和预测性能优于其他两种建模方法。RSQSRR 具有最高的 [公式:见文本]、[公式:见文本]和 [公式:见文本],最低的 [公式:见文本]。对于测试数据集,RSQSRR 显示出较高的外部验证值([公式:见文本])和较低的 [公式:见文本] 值,与其他方法相比,表明其具有更高的预测能力。总之,结果表明,所提出的 RSQSRR 是建模高维 QSRR 的有效方法,该方法可用于估计尚未进行实验测试的精油的 RI。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验