Sawala Annick, Gould Alex P
The Francis Crick Institute, London, United Kingdom.
PLoS Biol. 2017 Oct 4;15(10):e2002252. doi: 10.1371/journal.pbio.2002252. eCollection 2017 Oct.
Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.
体型的两性异形在动物界广泛存在,但其潜在机制尚未得到充分表征。大多数关于性染色体基因如何决定体型两性异形的模型都强调了性腺激素和细胞自主影响在哺乳动物中的重要性,而在黑腹果蝇中则强调严格的细胞自主机制。在这里,我们使用组织特异性遗传学来研究果蝇中两性体型差异(SSD)是如何建立的。我们发现,果蝇雌性特有的较大体型是在幼虫发育的早期通过单位体重生长速率的增加而建立的。我们证明,雌性性别决定基因性致死(Sxl)在中枢神经系统(CNS)神经元中起作用,作为一个信号传递的一部分,该信号传递决定了幼虫而非成虫组织早期性别特异性的生长轨迹。神经元Sxl在两个神经元亚群中具有累加作用,其中一个亚群对应于7个中脑神经分泌细胞:胰岛素产生细胞(IPC)。然而,令人惊讶的是,尽管IPC产生的胰岛素样肽(Ilp)的雌雄差异可能在后期发挥作用,但在早期幼虫中,它们似乎并不参与建立SSD。这些发现支持了一种信号传递模型,即神经元中的Sxl和局部组织中的Sxl共同作用,决定幼虫身体的雌性特异性生长。它们还揭示,尽管果蝇和哺乳动物的性别决定途径不同,但它们都通过组织自主和非自主输入的组合来调节身体生长。