Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA.
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
Plant J. 2017 Dec;92(5):939-950. doi: 10.1111/tpj.13730. Epub 2017 Nov 8.
Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non-oxidative deamination of Phe to trans-cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81-94% led to an 18-fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate-derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL-RNAi transgenic plants resulted in 1.6-fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies.
芳香族氨基酸苯丙氨酸(Phe)在动物体内的过度积累会产生有害影响,这种现象被称为苯丙酮尿症,其可以通过 Phe 衍生物的排泄得到缓解;然而,在缺乏排泄系统的情况下,植物如何耐受 Phe 积累的条件目前尚不清楚。为了在植物系统中实现 Phe 的过度积累,我们同时降低矮牵牛花朵中三种苯丙氨酸氨裂解酶(PAL)同工酶的表达,这些同工酶催化 Phe 向反式肉桂酸的非氧化脱氨反应,这是 Phe 代谢的主要途径中的关键步骤。PAL 活性总下降 81-94%导致内部 Phe 池扩大 18 倍。Phe 积累对芳香族氨基酸代谢具有多方面的隔室间相互作用。它导致通过莽草酸途径的整体通量减少,并将碳通量重新定向到莽草酸衍生的芳香族氨基酸酪氨酸和色氨酸。Phe 的积累并没有导致流向苯乙醛的通量增加,苯乙醛是 Phe 的直接前体。代谢通量分析表明,这是由于存在一个明显的代谢无活性的 Phe 池,可能定位于液泡中。我们已经鉴定出一种液泡阳离子氨基酸转运蛋白(PhCAT2),它有助于将过量的 Phe 隔离在液泡中。体外测定证实 PhCAT2 可以转运 Phe,并且在 PAL-RNAi 转基因植物中降低 PhCAT2 的表达导致苯乙醛的排放量增加 1.6 倍。这些结果表明了植物维持隔室间芳香族氨基酸动态平衡的机制,并为未来的苯丙烷代谢工程策略提供了重要的见解。