Karmakar Chandan, Udhayakumar Radhagayathri K, Li Peng, Venkatesh Svetha, Palaniswami Marimuthu
School of Information Technology, Deakin UniversityMelbourne, VIC, Australia.
Department of Electrical and Electronics Engineering, The University of MelbourneMelbourne, VIC, Australia.
Front Physiol. 2017 Sep 20;8:720. doi: 10.3389/fphys.2017.00720. eCollection 2017.
Distribution entropy () is a recently developed measure of complexity that is used to analyse heart rate variability (HRV) data. Its calculation requires two input parameters-the embedding dimension , and the number of bins which replaces the tolerance parameter that is used by the existing approximation entropy () and sample entropy () measures. The performance of can also be affected by the data length . In our previous studies, we have analyzed stability and performance of with respect to one parameter ( or ) or combination of two parameters ( and ). However, impact of varying all the three input parameters on is not yet studied. Since DistEn is predominantly aimed at analysing short length heart rate variability (HRV) signal, it is important to comprehensively study the stability, consistency and performance of the measure using multiple case studies. In this study, we examined the impact of changing input parameters on for synthetic and physiological signals. We also compared the variations of and performance in distinguishing physiological (Elderly from Young) and pathological (Healthy from Arrhythmia) conditions with and . The results showed that values are minimally affected by the variations of input parameters compared to and also showed the most consistent and the best performance in differentiating physiological and pathological conditions with various of input parameters among reported complexity measures. In conclusion, is found to be the best measure for analysing short length HRV time series.
分布熵()是一种最近开发的复杂性度量,用于分析心率变异性(HRV)数据。其计算需要两个输入参数——嵌入维度和箱数,箱数取代了现有近似熵()和样本熵()度量中使用的容差参数。分布熵的性能也会受到数据长度的影响。在我们之前的研究中,我们分析了分布熵相对于一个参数(或)或两个参数(和)的组合的稳定性和性能。然而,尚未研究改变所有三个输入参数对分布熵的影响。由于分布熵主要旨在分析短长度心率变异性(HRV)信号,因此使用多个案例研究全面研究该度量的稳定性、一致性和性能非常重要。在本研究中,我们研究了改变输入参数对合成信号和生理信号的分布熵的影响。我们还比较了分布熵与近似熵和样本熵在区分生理(老年人与年轻人)和病理(健康人与心律失常患者)状况时的变化和性能。结果表明,与近似熵和样本熵相比,分布熵的值受输入参数变化的影响最小,并且在使用各种输入参数区分生理和病理状况时,分布熵也表现出最一致和最佳的性能。总之,发现分布熵是分析短长度HRV时间序列的最佳度量。