Suppr超能文献

使用多元线性回归(MLR)方法对一些二氢吡啶和氢喹啉衍生物的COX -2抑制活性进行定量构效关系(QSAR)建模

QSAR Modeling of COX -2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method.

作者信息

Akbari Somaye, Zebardast Tannaz, Zarghi Afshin, Hajimahdi Zahra

机构信息

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran (IAUPS).

Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Iran J Pharm Res. 2017 Spring;16(2):525-532.

Abstract

COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure-activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R) of 0.972 and 0.531 for training and test groups, respectively. The quality of the model was evaluated by leave-one-out (LOO) cross validation (LOO correlation coefficient (Q) of 0.943) and Y-randomization. We also employed a leverage approach for the defining of applicability domain of model. Based on QSAR models results, COX-2 inhibitory activity of selected data set had correlation with BEHm6 (highest eigenvalue n. 6 of Burden matrix/weighted by atomic masses), Mor03u (signal 03/unweighted) and IVDE (Mean information content on the vertex degree equality) descriptors which derived from their structures.

摘要

采用逐步多元线性回归(SW-MLR)方法,通过定量构效关系(QSAR)对一些1,4-二氢吡啶和5-氧代-1,4,5,6,7,8-六氢喹啉衍生物的COX-2抑制活性进行建模。所建立的模型稳健且具有预测性,训练组和测试组的相关系数(R)分别为0.972和0.531。通过留一法(LOO)交叉验证(LOO相关系数(Q)为0.943)和Y随机化对模型质量进行评估。我们还采用了杠杆方法来定义模型的适用范围。基于QSAR模型结果,所选数据集的COX-2抑制活性与从其结构衍生的BEHm6(Burden矩阵的最高特征值n. 6/按原子质量加权)、Mor03u(信号03/未加权)和IVDE(顶点度相等的平均信息含量)描述符相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3c6/5603861/80388f825f35/ijpr-16-525-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验