Department of Chemistry, and ‡Polymer Program, Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States.
ACS Appl Mater Interfaces. 2017 Oct 25;9(42):36837-36848. doi: 10.1021/acsami.7b11453. Epub 2017 Oct 16.
Synthesis of nanostructured transition metal sulfides is of particular interest in providing new methods to control their porosity and improve their surface area because those sulfides hold promising applications in high-energy density devices. Significant challenges remain currently to prepare metal sulfides having three-dimensional (3-D) continuous mesoporous structures, known to be critical for increasing their active surface sites and enhancing ion transport. We herein present a facile solid-phase sulfurization method to synthesize 3-D continuous mesoporous CoS, NiS, and their binary sulfides in a two-step nanocasting using bicontinuous KIT-6 as hard templates. The solid-phase sulfurization taking place at 400 °C yields mesoporous sulfides with highly crystalline frameworks and a stoichiometric ratio of metal-to-sulfur, 1:2 (mol), within 30 min. Elemental sulfur as an inexpensive sulfur source can be directly used for the solid-phase sulfurization of mesoporous oxides of CoO, NiO, and their binary oxides. This facile synthetic method is highly efficient to prepare mesoporous sulfides in the gram-scale production at a very low cost. Mesoporous sulfides are demonstrated to be superior electrode materials for pseudo-supercapacitors, given their high surface area and accessible bicontinuous mesopores, the suitable crystalline sizes, and the enhanced ion transport capability. The use of binary mesoporous sulfides presents interesting synergetic effect where the doping of metal ions can significantly enhance the capacitive performance of single-component sulfides. The binary sulfides of mNiCoS show a specific capacitance up to 1698 F g at a current density of 2 A g. The supercapacitor device of mNiCoS has a high energy density of 37 Wh kg at a power density of 800 W kg. We believe that the reported solid-phase synthesis offers a universal method toward the conversion of mesoporous oxides materials into various useful and functional forms for energy conversion and storage applications.
合成纳米结构过渡金属硫化物在控制其多孔性和提高其表面积方面具有特别的意义,因为这些硫化物在高能量密度器件中有很有前途的应用。目前,仍然存在很大的挑战,需要制备具有三维(3-D)连续介孔结构的金属硫化物,这对于增加其活性表面位点和增强离子传输是至关重要的。在此,我们提出了一种简便的固相硫化法,通过两步纳米铸造法使用双连续 KIT-6 作为硬模板,在 400°C 下合成 3-D 连续介孔 CoS、NiS 和它们的二元硫化物。固相硫化在 30 分钟内,以 400°C 进行,生成具有高度结晶框架和金属与硫的化学计量比为 1:2(摩尔)的介孔硫化物。元素硫作为一种廉价的硫源,可以直接用于 CoO、NiO 及其二元氧化物的介孔氧化物的固相硫化。这种简便的合成方法在非常低的成本下,以克级规模高效地制备介孔硫化物。介孔硫化物作为赝电容电极材料具有优越性,因为它们具有高表面积和可及的双连续介孔、合适的结晶尺寸和增强的离子传输能力。二元介孔硫化物的使用呈现出有趣的协同效应,其中金属离子的掺杂可以显著提高单一组分硫化物的电容性能。mNiCoS 的比电容在 2 A g 的电流密度下高达 1698 F g。mNiCoS 的超级电容器装置在 800 W kg 的功率密度下具有 37 Wh kg 的高能量密度。我们相信,所报道的固相合成为将介孔氧化物材料转化为各种用于能量转换和存储应用的有用和功能性形式提供了一种通用方法。