Suppr超能文献

用于混合超级电容器的高性能电池型电极:合理设计的双金属硫化钴镍微球

Rationally Designed Bimetallic Co-Ni Sulfide Microspheres as High-Performance Battery-Type Electrode for Hybrid Supercapacitors.

作者信息

Rajesh John Anthuvan, Park Jong-Young, Manikandan Ramu, Ahn Kwang-Soon

机构信息

School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.

Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea.

出版信息

Nanomaterials (Basel). 2022 Dec 13;12(24):4435. doi: 10.3390/nano12244435.

Abstract

Rational designing of electrode materials is of great interest for improving the performance of battery-type supercapacitors. The bimetallic NiCoS (NCS) and CoNiS (CNS) electrode materials have received much attention for supercapacitors due to their rich electrochemical characteristics. However, the comparative electrochemical performances of NCS and CNS electrodes were never studied for supercapacitor application. In this work, microsphere-like bimetallic NCS and CNS structures were synthesized via a facile one-step hydrothermal method by controlling the molar ratio of Ni and Co precursors. The physico-chemical results confirmed that microsphere-like structures with cubic spinel-type NCS and CNS materials were successfully fabricated by this method. When tested as the supercapacitor electrode materials, both NCS and CNS electrodes exhibited battery-type behavior in a three-electrode configuration with outstanding electrochemical performances such as specific capacity, rate performance and cycle stability. Impressively, the CNS electrode delivered a high specific capacity of 430.1 C g at 1 A g, which is higher than 345.9 C g of the NCS electrode. Furthermore, the NCS and CNS electrodes showed a decent cycling stability with 75.70 and 84.70% capacity retention after 10,000 cycles. Benefiting from the electrochemical advantage of CNS microspheres, we fabricated a hybrid supercapacitor (HSC) device based on CNS microspheres (positive electrode) and activated carbon (AC, negative electrode), which is named as CNS//AC. The assembled CNS//AC HSC device showed a large energy density of 41.98 Wh kg at a power density of 800.04 W kg and displayed a remarkable cycling stability with a capacity retention of 91.79% after 15,000 cycles. These excellent electrochemical performances demonstrate that both bimetallic NCS and CNS microspheres may provide potential electrode materials for high performance battery-type supercapacitors.

摘要

合理设计电极材料对于提高电池型超级电容器的性能具有重要意义。双金属硫化镍钴(NCS)和硫化钴镍(CNS)电极材料因其丰富的电化学特性而在超级电容器领域备受关注。然而,从未有研究对NCS和CNS电极在超级电容器应用中的电化学性能进行比较。在这项工作中,通过控制镍和钴前驱体的摩尔比,采用简便的一步水热法合成了微球状双金属NCS和CNS结构。物理化学结果证实,通过该方法成功制备了具有立方尖晶石型NCS和CNS材料的微球状结构。当作为超级电容器电极材料进行测试时,NCS和CNS电极在三电极配置中均表现出电池型行为,具有出色的电化学性能,如比容量、倍率性能和循环稳定性。令人印象深刻的是,CNS电极在1 A g时的比容量高达430.1 C g,高于NCS电极的345.9 C g。此外,NCS和CNS电极在10000次循环后分别具有75.70%和84.70%的容量保持率,显示出良好的循环稳定性。受益于CNS微球的电化学优势,我们制备了一种基于CNS微球(正极)和活性炭(AC,负极)的混合超级电容器(HSC)器件,命名为CNS//AC。组装后的CNS//AC HSC器件在功率密度为800.04 W kg时的能量密度为41.98 Wh kg,并在15000次循环后显示出显著的循环稳定性,容量保持率为91.79%。这些优异的电化学性能表明,双金属NCS和CNS微球均可能为高性能电池型超级电容器提供潜在的电极材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/85d0/9784776/949c223bf2a5/nanomaterials-12-04435-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验