Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo 116-8551, Japan. National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan.
Phys Med Biol. 2017 Nov 9;62(23):8869-8881. doi: 10.1088/1361-6560/aa9155.
To measure the absorbed dose to water D in proton beams using a radiophotoluminescent glass dosimeter (RGD), a method with the correction for the change of the mass stopping power ratio (SPR) and the linear energy transfer (LET) dependence of radiophotoluminescent efficiency [Formula: see text] is proposed. The calibration coefficient in terms of D for RGDs (GD-302M, Asahi Techno Glass) was obtained using a Co γ-ray. The SPR of water to the RGD was calculated by Monte Carlo simulation, and [Formula: see text] was investigated experimentally using a 70 MeV proton beam. For clinical usage, the residual range R was used as a quality index to determine the correction factor for the beam quality [Formula: see text] and the LET quenching effect of the RGD [Formula: see text]. The proposed method was evaluated by measuring D at different depths in a 200 MeV proton beam. For both non-modulated and modulated proton beams, [Formula: see text] decreases rapidly where R is less than 4 cm. The difference in [Formula: see text] between a non-modulated and a modulated proton beam is less than 0.5% for the R range from 0 cm to 22 cm. [Formula: see text] decreases rapidly at a LET range from 1 to 2 keV µm. In the evaluation experiments, D using RGDs, [Formula: see text] showed good agreement with that obtained using an ionization chamber and the relative difference was within 3% where R was larger than 1 cm. The uncertainty budget for [Formula: see text] in a proton beam was estimated to investigate the potential of RGD postal dosimetry in proton therapy. These results demonstrate the feasibility of RGD dosimetry in a therapeutic proton beam and the general versatility of the proposed method. In conclusion, the proposed methodology for RGDs in proton dosimetry is applicable where R > 1 cm and the RGD is feasible as a postal audit dosimeter for proton therapy.
为了使用放射性光致发光玻璃剂量计(RGD)测量质子束中的水吸收剂量 D,提出了一种校正质量阻止本领比(SPR)变化和放射性光致发光效率的线性能量转移(LET)依赖性的方法[公式:见文本]。使用 Co γ 射线获得了 RGD(Asahi Techno Glass 的 GD-302M)的 D 校准系数。通过蒙特卡罗模拟计算了水到 RGD 的 SPR,并用 70 MeV 质子束实验研究了[公式:见文本]。为了临床应用,残余射程 R 被用作确定束质修正因子 [公式:见文本] 和 RGD 的 LET 淬灭效应[公式:见文本]的质量指数。通过在 200 MeV 质子束中不同深度测量 D 来评估所提出的方法。对于非调制和调制质子束,[公式:见文本]在 R 小于 4 cm 时迅速下降。在 0 cm 到 22 cm 的 R 范围内,非调制质子束和调制质子束之间的 [公式:见文本]差异小于 0.5%。在 LET 范围为 1 到 2 keV µm 时,[公式:见文本]迅速下降。在评估实验中,RGD 测量的 D、[公式:见文本]与使用电离室获得的值吻合良好,在 R 大于 1 cm 时,相对差异在 3%以内。估计质子束中[公式:见文本]的不确定度预算,以研究 RGD 在质子治疗中的邮包剂量测定的潜力。这些结果表明 RGD 剂量测定在治疗质子束中的可行性,以及所提出的方法的普遍通用性。总之,在 R > 1 cm 的情况下,质子剂量测定中 RGD 的提出的方法是可行的,并且 RGD 作为质子治疗的邮包审核剂量计是可行的。