Instituto de Fı́sica, Universidade Federal do Rio Grande do Sul. , Av. Bento Gonçalves 9500, CEP 91501-970, Porto Alegre/RS, Brazil.
Langmuir. 2017 Oct 31;33(43):12535-12545. doi: 10.1021/acs.langmuir.7b03230. Epub 2017 Oct 19.
In this work, we consider two possible wetting states for a droplet when placed on a substrate: the Fakir configuration of a Cassie-Baxter (CB) state with a droplet residing on top of roughness grooves and the one characterized by the homogeneous wetting of the surface, referred as the Wenzel (W) state. We extend a theoretical model based on the global interfacial energies for both states CB and W to study the wetting behavior of simple and double reentrant surfaces. Due to the minimization of the energies associated with each wetting state, we predict the thermodynamic wetting state of the droplet for a given surface texture and obtain its contact angle θ. We first use this model to find the geometries for pillared, simple and double reentrant surfaces that most enhances θ and conclude that the repellent behavior of these surfaces is governed by the relation between the height and width of the reentrances. We compare our results with recent experiments and discuss the limitations of this thermodynamic approach. To address one of these limitations, we implement Monte Carlo simulations of the cellular Potts Model in three dimensions, which allow us to investigate the dependency of the wetting state on the initial state of the droplet. We find that when the droplet is initialized in a CB state, it gets trapped in a local minimum and stays in the repellent behavior irrespective of the theoretical prediction. When the initial state is W, simulations show a good agreement with theory for pillared surfaces for all geometries, but for reentrant surfaces the agreement only happens in few cases: for most simulated geometries the contact angle reached by the droplet in simulations is higher than θ predicted by the model. Moreover, we find that the contact angle of the simulated droplet is higher when placed on the reentrant surfaces than for a pillared surfaces with the same height, width and pillar distance.
在这项工作中,我们考虑了液滴放置在基底上时的两种可能的润湿状态:Cassie-Baxter (CB) 状态的 Fakir 配置,其中液滴位于粗糙度凹槽的顶部,以及表面均匀润湿的状态,称为 Wenzel (W) 状态。我们扩展了一个基于两种状态 CB 和 W 的全局界面能的理论模型,以研究简单和双重内凹表面的润湿行为。由于与每个润湿状态相关的能量最小化,我们预测了给定表面纹理的液滴的热力学润湿状态,并获得了其接触角θ。我们首先使用该模型找到最能提高θ的支柱、简单和双重内凹表面的几何形状,并得出这些表面的斥力行为由内凹入口的高度和宽度之间的关系决定。我们将我们的结果与最近的实验进行了比较,并讨论了这种热力学方法的局限性。为了解决其中的一个局限性,我们在三维中实现了元胞 Potts 模型的蒙特卡罗模拟,这使我们能够研究润湿状态对液滴初始状态的依赖性。我们发现,当液滴初始处于 CB 状态时,它会被困在局部最小值处,并保持排斥行为,无论理论预测如何。当初始状态为 W 时,模拟结果与支柱表面的理论预测吻合较好,但对于内凹表面,只有在少数情况下才吻合:对于大多数模拟几何形状,液滴在模拟中达到的接触角高于模型预测的θ。此外,我们发现当液滴放置在内凹表面上时,其接触角高于具有相同高度、宽度和支柱距离的支柱表面。