Guo Tai Wei, Bartesaghi Alberto, Yang Hui, Falconieri Veronica, Rao Prashant, Merk Alan, Eng Edward T, Raczkowski Ashleigh M, Fox Tara, Earl Lesley A, Patel Dinshaw J, Subramaniam Sriram
Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
Cell. 2017 Oct 5;171(2):414-426.e12. doi: 10.1016/j.cell.2017.09.006.
Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.
原核细胞拥有CRISPR介导的适应性免疫系统,可保护它们免受外来遗传元件(如入侵病毒)的侵害。该免疫系统的核心元件是一种RNA引导的监测复合物,它能够以类似于RNA干扰的序列和位点特异性方式靶向非自身DNA或RNA进行降解。尽管这些复合物在组成和结构上表现出相当大的多样性,但许多靶标识别和切割的基本机制是高度保守的。我们利用冷冻电子显微镜(cryo-EM)表明,靶标双链DNA(dsDNA)与I-F型CRISPR系统耶尔森氏菌(Csy)监测复合物的结合会导致该复合物发生大的四级和三级结构变化,这些变化可能是通过反式作用解旋酶-核酸酶导致靶标dsDNA降解的途径中所必需的。比较dsDNA结合前后监测复合物的结构,或与三种抑制dsDNA结合的病毒编码抗CRISPR抑制因子形成的复合物的结构,揭示了靶标识别和抑制的机制细节。