Suppr超能文献

集合大小操作揭示了感知整体学习的边界条件。

Set size manipulations reveal the boundary conditions of perceptual ensemble learning.

作者信息

Chetverikov Andrey, Campana Gianluca, Kristjánsson Árni

机构信息

Laboratory for Visual Perception and Visuomotor Control, Faculty of Psychology, School of Health Sciences, University of Iceland, Reykjavik, Iceland; Cognitive Research Lab, Russian Academy of National Economy and Public Administration, Moscow, Russia; Department of Psychology, Saint Petersburg State University, Saint Petersburg, Russia.

Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padova, Italy; Human Inspired Technology Research Centre, Università degli Studi di Padova, Padova, Italy.

出版信息

Vision Res. 2017 Nov;140:144-156. doi: 10.1016/j.visres.2017.08.003. Epub 2017 Oct 16.

Abstract

Recent evidence suggests that observers can grasp patterns of feature variations in the environment with surprising efficiency. During visual search tasks where all distractors are randomly drawn from a certain distribution rather than all being homogeneous, observers are capable of learning highly complex statistical properties of distractor sets. After only a few trials (learning phase), the statistical properties of distributions - mean, variance and crucially, shape - can be learned, and these representations affect search during a subsequent test phase (Chetverikov, Campana, & Kristjánsson, 2016). To assess the limits of such distribution learning, we varied the information available to observers about the underlying distractor distributions by manipulating set size during the learning phase in two experiments. We found that robust distribution learning only occurred for large set sizes. We also used set size to assess whether the learning of distribution properties makes search more efficient. The results reveal how a certain minimum of information is required for learning to occur, thereby delineating the boundary conditions of learning of statistical variation in the environment. However, the benefits of distribution learning for search efficiency remain unclear.

摘要

最近的证据表明,观察者能够以惊人的效率掌握环境中特征变化的模式。在视觉搜索任务中,所有干扰项都是从特定分布中随机抽取的,而不是全部相同,观察者能够学习干扰项集的高度复杂的统计特性。仅经过几次试验(学习阶段),就可以学习分布的统计特性——均值、方差,关键是形状,并且这些表征会在随后的测试阶段影响搜索(切特韦里科夫、坎帕纳和克里斯蒂安松,2016年)。为了评估这种分布学习的局限性,我们在两个实验的学习阶段通过操纵集合大小来改变观察者可获得的关于潜在干扰项分布的信息。我们发现,强大的分布学习仅在集合大小较大时才会发生。我们还使用集合大小来评估分布特性的学习是否使搜索更有效。结果揭示了学习发生需要一定的最小信息量,从而划定了环境中统计变化学习的边界条件。然而,分布学习对搜索效率的好处仍不清楚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验