Suppr超能文献

非经典 σ-穴相互作用对 λ-碘烷配合物反应性的重要性。

Importance of Nonclassical σ-Hole Interactions for the Reactivity of λ-Iodane Complexes.

机构信息

Departement of Chemistry and Applied Biosciences, ETH Zürich , Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland.

出版信息

J Org Chem. 2017 Nov 17;82(22):11799-11805. doi: 10.1021/acs.joc.7b01716. Epub 2017 Oct 24.

Abstract

Key for the observed reactivity of λ-iodanes, powerful reagents for the selective transfer of functional groups to nucleophiles, are the properties of the 3-center-4-electron bond involving the iodine atom and the two linearly arranged ligands. This bond is also involved in the formation of the initial complex between the λ-iodane and a nucleophile, which can be a solvent molecule or a reactant. The bonding in such complexes can be described by means of σ-hole interactions. In halogen compounds, σ-hole interaction was identified as a force in crystal packing or in the formation of supramolecular chains. More recently, σ-hole interactions were also shown to affect the reactivity of the iodine-based hypervalent reagents. Relative to their monovalent counterparts, where the σ-hole is located on the extension of the sigma-bond, in the hypervalent species our DFT calculations reveal the formation of a nonclassical σ-hole region with one or even two maxima. This observation is also made in fully relativistic calculations. The SAPT analysis shows that the σ-hole bond between the λ-iodane and the nucleophile is not necessarily of purely electrostatic nature but may also contain a significant covalent component. This covalent component may facilitate chemical transformation of the compound by means of reductive elimination or other mechanisms and is therefore an indicator for its reactivity. Here, we also show that the shape, location, and strength of the σ-holes can be tuned by the choice of ligands and measures such as Brønsted activation of the iodane reagent. At the limit, the tuning transforms the nonclassical σ-hole regions into coordination sites, which allows us to control how a nucleophile will bind and react with the iodane.

摘要

观察到 λ-碘烷的反应性的关键是涉及碘原子和两个线性排列的配体的 3 中心 4 电子键的性质,λ-碘烷是一种将官能团选择性转移到亲核试剂的强试剂。该键还涉及 λ-碘烷与亲核试剂之间初始配合物的形成,亲核试剂可以是溶剂分子或反应物。可以通过 σ-hole 相互作用来描述这种配合物中的键合。在卤代化合物中,σ-hole 相互作用被确定为晶体堆积或超分子链形成的力。最近,σ-hole 相互作用也被证明会影响基于碘的高价试剂的反应性。与单价对应物相比,其中 σ-hole 位于 σ 键的延伸部分,在高价物种中,我们的 DFT 计算揭示了形成非经典 σ-hole 区域的情况,其中有一个甚至两个最大值。在全相对论计算中也观察到了这一现象。SAPT 分析表明,λ-碘烷和亲核试剂之间的 σ-hole 键不一定具有纯粹的静电性质,也可能包含显著的共价成分。这种共价成分可以通过还原消除或其他机制促进化合物的化学转化,因此是其反应性的一个指标。在这里,我们还表明,通过选择配体和 Brønsted 激活碘烷试剂等措施,可以调整 σ-hole 的形状、位置和强度。在极限情况下,调谐将非经典 σ-hole 区域转化为配位位点,这使我们能够控制亲核试剂将如何与碘烷结合和反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验