自我客体化:自我研究的新兴趋势。

Self as Object: Emerging Trends in Self Research.

机构信息

Department of Psychology, University of Bath, Bath, UK; Both authors contributed equally to this work.

School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA; Both authors contributed equally to this work.

出版信息

Trends Neurosci. 2017 Nov;40(11):643-653. doi: 10.1016/j.tins.2017.09.002. Epub 2017 Oct 5.

Abstract

Self representation is fundamental to mental functions. While the self has mostly been studied in traditional psychophilosophical terms ('self as subject'), recent laboratory work suggests that the self can be measured quantitatively by assessing biases towards self-associated stimuli ('self as object'). Here, we summarize new quantitative paradigms for assessing the self, drawn from psychology, neuroeconomics, embodied cognition, and social neuroscience. We then propose a neural model of the self as an emerging property of interactions between a core 'self network' (e.g., medial prefrontal cortex; mPFC), a cognitive control network [e.g., dorsolateral (dl)PFC], and a salience network (e.g., insula). This framework not only represents a step forward in self research, but also has important clinical significance, resonating recent efforts in computational psychiatry.

摘要

自我表现是心理功能的基础。虽然自我主要是在传统的心理哲学范畴内进行研究(“自我作为主体”),但最近的实验室工作表明,通过评估对自我相关刺激的偏见(“自我作为客体”),可以对自我进行定量测量。在这里,我们从心理学、神经经济学、具身认知和社会神经科学中总结了评估自我的新定量范式。然后,我们提出了一个自我的神经模型,作为核心“自我网络”(例如内侧前额叶皮层;mPFC)、认知控制网络[例如背外侧(dl)PFC]和突显网络(例如脑岛)之间相互作用的新兴特性。这个框架不仅代表了自我研究的一个进步,而且具有重要的临床意义,与最近计算精神病学领域的努力产生了共鸣。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索