Suppr超能文献

超越低分辨率粗粒度蛋白质建模。

SURPASS Low-Resolution Coarse-Grained Protein Modeling.

机构信息

Faculty of Chemistry, Biological and Chemical Research Center, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland.

出版信息

J Chem Theory Comput. 2017 Nov 14;13(11):5766-5779. doi: 10.1021/acs.jctc.7b00642. Epub 2017 Oct 23.

Abstract

Coarse-grained modeling of biomolecules has a very important role in molecular biology. In this work we present a novel SURPASS (Single United Residue per Pre-Averaged Secondary Structure fragment) model of proteins that can be an interesting alternative for existing coarse-grained models. The design of the model is unique and strongly supported by the statistical analysis of structural regularities characteristic for protein systems. Coarse-graining of protein chain structures assumes a single center of interactions per residue and accounts for preaveraged effects of four adjacent residue fragments. Knowledge-based statistical potentials encode complex interaction patterns of these fragments. Using the Replica Exchange Monte Carlo sampling scheme and a generic version of the SURPASS force field we performed test simulations of a representative set of single-domain globular proteins. The method samples a significant part of conformational space and reproduces protein structures, including native-like, with surprisingly good accuracy. Future extension of the SURPASS model on large biomacromolecular systems is briefly discussed.

摘要

生物分子的粗粒化建模在分子生物学中具有非常重要的作用。在这项工作中,我们提出了一种新的蛋白质 SURPASS(每个预平均二级结构片段的单个统一残基)模型,它可以作为现有粗粒化模型的有趣替代方案。该模型的设计是独特的,并得到了对蛋白质系统特征的结构规律的统计分析的有力支持。蛋白质链结构的粗粒化假设每个残基只有一个相互作用中心,并考虑了四个相邻残基片段的预平均效应。基于知识的统计势能对这些片段的复杂相互作用模式进行编码。使用 Replica Exchange Monte Carlo 抽样方案和 SURPASS 力场的通用版本,我们对一组有代表性的单域球状蛋白质进行了测试模拟。该方法可以对构象空间的很大一部分进行采样,并以惊人的准确性再现蛋白质结构,包括天然样结构。还简要讨论了将 SURPASS 模型扩展到大型生物大分子系统的未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验