Suppr超能文献

使用低分辨率 SURPASS 方法进行大规模蛋白质建模中二级结构数据的重要性。

Importance of Secondary Structure Data in Large Scale Protein Modeling Using Low-Resolution SURPASS Method.

机构信息

Office of Biotechnology, Iowa State University, Ames, IA, USA.

Faculty of Chemistry, University of Warsaw, Warsaw, Poland.

出版信息

Methods Mol Biol. 2025;2867:55-78. doi: 10.1007/978-1-0716-4196-5_4.

Abstract

Secondary structure elements, such as alpha helices and beta strands, play a fundamental role in defining the overall fold of a protein. Leveraging secondary structure information is essential for encoding the structural features in coarse-grained protein models. Such models simplify the representation of amino acid residues, thereby reducing computational complexity. By incorporating accurate (even if only partial) secondary structure data, the models can efficiently search for the native conformation of proteins and preserve the core structural motifs across extended time frames. Here, the pivotal role of (predicted) secondary structure data in the coarse-grained modeling of protein tertiary and quaternary structures, along with their long-time dynamics, is investigated. Computational simulations of large protein systems using a low-resolution SURPASS model were performed. These case studies demonstrate the sufficiency of predicted secondary structure data in an accurate fold assembly. It leads to a realistic depiction of long-time dynamics in the recorded pseudo-trajectories by employing the Monte Carlo dynamics sampling schema, based on a long random sequence of local conformational modifications. This approach may provide a powerful tool for investigating the critical stages of protein folding. Future combination with knowledge-based potentials derived using machine learning techniques offers exciting opportunities to unravel the underlying mechanisms of biological processes in a variety of molecular complexes.

摘要

二级结构元件,如α螺旋和β链,在定义蛋白质的整体折叠中起着基本作用。利用二级结构信息对于在粗粒蛋白质模型中编码结构特征至关重要。这些模型简化了氨基酸残基的表示,从而降低了计算复杂度。通过纳入准确的(即使只是部分)二级结构数据,模型可以有效地搜索蛋白质的天然构象,并在扩展的时间范围内保留核心结构基序。在这里,研究了(预测)二级结构数据在蛋白质三级和四级结构的粗粒建模及其长时间动力学中的关键作用。使用低分辨率的 SURPASS 模型对大型蛋白质系统进行了计算模拟。这些案例研究表明,预测的二级结构数据在准确的折叠组装中是足够的。它通过基于局部构象修改的长随机序列的蒙特卡罗动力学采样方案,在记录的伪轨迹中实现长时间动力学的真实描绘。这种方法可能为研究蛋白质折叠的关键阶段提供一种强大的工具。未来与使用机器学习技术得出的基于知识的势能相结合,为在各种分子复合物中揭示生物过程的潜在机制提供了令人兴奋的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验