Leprêtre P-M, Ghannem M, Delanaud S, Jaunet N, Gaillard L, Barnabé A, Porcher T, Weissland T
EA-3300, UFR-STAPS, laboratoire « Adaptations physiologiques à l'exercice et Réadaptation à l'Effort », université de Picardie-Jules-Verne, allée Paschal-Grousset, campus Sud, 80025 Amiens cedex 1, France.
EA-3300, UFR-STAPS, laboratoire « Adaptations physiologiques à l'exercice et Réadaptation à l'Effort », université de Picardie-Jules-Verne, allée Paschal-Grousset, campus Sud, 80025 Amiens cedex 1, France; Service de cardiologie, centre hospitalier de Gonesse, Pôle 6, spécialités médicales et médecine polyvalente, 95500 Gonesse, France.
Ann Cardiol Angeiol (Paris). 2017 Nov;66(5):283-287. doi: 10.1016/j.ancard.2017.09.006. Epub 2017 Oct 6.
Previous studies showed that changes in peak of oxygen uptake value (VO) with training were poorly related to changes in Maximal Tolerated Power output (MTP) among patients with cardiovascular disease. This result could be due to a difference between cardiopulmonary adaptation to training and the skeletal muscle conditioning.
The aim of the study was to compare the responses to exercise training of electromyographic activities of vastus lateralis (rms-EMG) and respiratory parameters.
Nine cardiac patients (64.0±3.1y, 172.9±4.8cm, 83.4±16.3kg, BMI: 27.8±4.5) performed an incremental cycling exercise test to determine MTP, VO and peak values of heart rate, before and after an aerobic training. Ventilatory thresholds were respectively determined as the breakpoint in the curve of carbon dioxide output against oxygen uptake plot (VT) and the point at which the ratio of minute ventilation to carbon dioxide output starts to increase (VT). EMG and EMG were defined as the first and the second breakpoints in the rms-EMG - power output relationship.
Short-term exercise training (23.7±8.8 days) induced a significant increase in VO (P=0.004), MTP (P=0.015), VT (P=0.001) and VT (P=0.001). Changes in VO only attained the survival criteria (3.5±2.9mLminkg). No significant differences (P>0.05) existed between mean power values of VT and EMG (60.5±4.1 vs. 59.2±9.6% of MTP, respectively), or between VT and EMG (78.3±5.7 vs. 80.2±5.2% of MTP). After training, EMG occurred significantly before VT (60.5±6.2 vs. 64.8±4.8% of MTP, P=0.049).
This might be taken into account for prescribing exercise rehabilitation according initial clinical limitations of patients.
先前的研究表明,在心血管疾病患者中,训练引起的摄氧量峰值(VO)变化与最大耐受功率输出(MTP)变化之间的相关性较差。这一结果可能是由于心肺对训练的适应与骨骼肌调节之间存在差异。
本研究旨在比较股外侧肌肌电图活动(均方根肌电图,rms-EMG)和呼吸参数对运动训练的反应。
9名心脏病患者(64.0±3.1岁,172.9±4.8厘米,83.4±16.3千克,体重指数:27.8±4.5)在有氧训练前后进行递增式自行车运动试验,以确定MTP、VO以及心率峰值。通气阈值分别确定为二氧化碳输出量与摄氧量关系曲线中的断点(VT)以及分钟通气量与二氧化碳输出量之比开始增加的点(VT)。EMG和EMG定义为均方根肌电图-功率输出关系中的第一个和第二个断点。
短期运动训练(23.7±8.8天)使VO(P=0.004)、MTP(P=0.015)、VT(P=0.001)和VT(P=0.001)显著增加。VO的变化仅达到生存标准(3.5±2.9毫升·分钟·千克)。VT和EMG的平均功率值之间(分别为MTP的60.5±4.1%和59.2±9.6%)或VT和EMG之间(分别为MTP的78.3±5.7%和80.2±5.2%)无显著差异(P>0.05)。训练后,EMG显著先于VT出现(分别为MTP的60.5±6.2%和64.8±4.8%,P=0.049)。
根据患者最初的临床局限性制定运动康复方案时,可能需要考虑这一点。