Suppr超能文献

一种用于预测疑似非 ST 段抬高型急性冠脉综合征患者住院期间心搏骤停风险的简便风险评分 - SAFER 评分。

A user-friendly risk-score for predicting in-hospital cardiac arrest among patients admitted with suspected non ST-elevation acute coronary syndrome - The SAFER-score.

机构信息

Department of Medicine, Karolinska Institutet and Department of Cardiology, Karolinska University Hospital Stockholm, Sweden.

Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.

出版信息

Resuscitation. 2017 Dec;121:41-48. doi: 10.1016/j.resuscitation.2017.10.004. Epub 2017 Oct 6.

Abstract

AIM

To develop a simple risk-score model for predicting in-hospital cardiac arrest (CA) among patients hospitalized with suspected non-ST elevation acute coronary syndrome (NSTE-ACS).

METHODS

Using the Swedish Web-system for Enhancement and Development of Evidence-based care in Heart disease Evaluated According to Recommended Therapies (SWEDEHEART), we identified patients (n=242 303) admitted with suspected NSTE-ACS between 2008 and 2014. Logistic regression was used to assess the association between 26 candidate variables and in-hospital CA. A risk-score model was developed and validated using a temporal cohort (n=126 073) comprising patients from SWEDEHEART between 2005 and 2007 and an external cohort (n=276 109) comprising patients from the Myocardial Ischaemia National Audit Project (MINAP) between 2008 and 2013.

RESULTS

The incidence of in-hospital CA for NSTE-ACS and non-ACS was lower in the SWEDEHEART-derivation cohort than in MINAP (1.3% and 0.5% vs. 2.3% and 2.3%). A seven point, five variable risk score (age ≥60 years (1 point), ST-T abnormalities (2 points), Killip Class >1 (1 point), heart rate <50 or ≥100bpm (1 point), and systolic blood pressure <100mmHg (2 points) was developed. Model discrimination was good in the derivation cohort (c-statistic 0.72) and temporal validation cohort (c-statistic 0.74), and calibration was reasonable with a tendency towards overestimation of risk with a higher sum of score points. External validation showed moderate discrimination (c-statistic 0.65) and calibration showed a general underestimation of predicted risk.

CONCLUSIONS

A simple points score containing five variables readily available on admission predicts in-hospital CA for patients with suspected NSTE-ACS.

摘要

目的

开发一种简单的风险评分模型,用于预测因疑似非 ST 段抬高型急性冠脉综合征(NSTE-ACS)住院的患者院内心搏骤停(CA)。

方法

利用瑞典 Web 系统增强和发展基于证据的心脏病治疗评价(SWEDEHEART),我们确定了 2008 年至 2014 年期间因疑似 NSTE-ACS 住院的患者(n=242303)。使用逻辑回归评估 26 个候选变量与院内 CA 之间的关联。使用来自 SWEDEHEART(2005 年至 2007 年)的患者的时间队列(n=126073)和来自心肌缺血国家审计项目(MINAP)(2008 年至 2013 年)的患者的外部队列(n=276109)开发和验证风险评分模型。

结果

与 MINAP 相比,SWEDEHEART 队列中 NSTE-ACS 和非 ACS 的院内 CA 发生率较低(分别为 1.3%和 0.5%,2.3%和 2.3%)。建立了一个七点五分的五变量风险评分(年龄≥60 岁(1 分)、ST-T 异常(2 分)、Killip 分级>1(1 分)、心率<50 或≥100bpm(1 分)和收缩压<100mmHg(2 分)。在推导队列中,该模型的区分度较好(C 统计量为 0.72),在时间验证队列中也较好(C 统计量为 0.74),校准合理,存在随着评分总和增加而高估风险的趋势。外部验证显示中等区分度(C 统计量为 0.65)和校准显示预测风险的普遍低估。

结论

一个包含五个入院时即可获得的变量的简单评分可以预测疑似 NSTE-ACS 患者的院内 CA。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验