Suppr超能文献

应用平方根容积卡尔曼滤波器对非线性系统进行输入力估计

Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.

作者信息

Song Xuegang, Zhang Yuexin, Liang Dakai

机构信息

State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

出版信息

Materials (Basel). 2017 Oct 10;10(10):1162. doi: 10.3390/ma10101162.

Abstract

This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

摘要

这项工作提出了一种新颖的逆算法,用于估计非线性梁系统中随时间变化的输入力。在确定系统参数后,可以根据动态响应实时估计输入力,这可用于结构健康监测。在输入力估计过程中,采用四阶龙格 - 库塔算法离散状态方程;采用平方根容积卡尔曼滤波器(SRCKF)抑制白噪声;利用SRCKF生成的残差创新序列、先验状态估计、增益矩阵和创新协方差,通过非线性估计器估计输入力的大小和位置。该非线性估计器基于最小二乘法。进行了大挠度梁的数值模拟和受非线性弹簧约束的线性梁的实验。结果证明了该非线性算法的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验