Suppr超能文献

Characterization of the ATPase activity of the Mr 170,000 to 180,000 membrane glycoprotein (P-glycoprotein) associated with multidrug resistance in K562/ADM cells.

作者信息

Hamada H, Tsuruo T

机构信息

Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo.

出版信息

Cancer Res. 1988 Sep 1;48(17):4926-32.

PMID:2900677
Abstract

The Mr 170,000 to 180,000 membrane glycoprotein associated with multidrug resistance (P-glycoprotein) is involved in drug transport mechanisms across the plasma membrane of multidrug-resistant cells. We have recently reported the purification of P-glycoprotein. The purified P-glycoprotein was found to have an ATPase activity, which might be coupled with the active efflux of anticancer drugs. In the present study, we have further studied the properties of the P-glycoprotein ATPase activity by an immobilized enzyme assay procedure using a P-glycoprotein-antibody-Protein A-Sepharose complex. GTP was also hydrolyzed by the P-glycoprotein, although less efficiently than ATP. The ATPase activity of P-glycoprotein had an optimal pH range around neutrality (pH 6.5-7.4). The detergent concentration of 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propane sulfonate used for protein solubilization was essential for enzyme recovery. Maximum activity was obtained when 0.1-0.2% 3-[(3-cholamidopropyl)dimethyl-ammonio]-propane sulfonate was used, while higher concentrations markedly inhibited the ATPase activity. The ATPase activity was dependent on Mg2+; maximum activity was obtained at 2-10 mM. Manganese and cobalt could substitute for magnesium as ionic cofactors. Divalent cations such as Ca2+, Zn2+, Ni2+, Cd2+, and Cu2+ inhibited the Mg2+-catalyzed ATP hydrolysis. N-Ethylmaleimide and vanadate inhibited the ATPase activity, while sodium azide or ouabain had no effect. Anticancer agents such as vincristine and Adriamycin did not affect the enzyme activity. In contrast, verapamil and trifluoperazine, agents which inhibit active drug efflux and restore drug sensitivity in resistant cells, caused an increase in the P-glycoprotein ATPase activity suggesting that P-glycoprotein might be the target molecule of these agents.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验