Suppr超能文献

Modulation of tyrosine hydroxylase gene expression in rat brain and adrenals by exposure to cold.

作者信息

Richard F, Faucon-Biguet N, Labatut R, Rollet D, Mallet J, Buda M

机构信息

Laboratoire de Neurochimie Fonctionnelle, Hôpital Ste. Eugénie, St. Genis Laval, France.

出版信息

J Neurosci Res. 1988 May;20(1):32-7. doi: 10.1002/jnr.490200106.

Abstract

The long-term changes in tyrosine hydroxylase (TH) activity induced by chronic exposure to cold in brain noradrenergic neurons of the locus coeruleus (LC) were analyzed and compared to those measured in a peripheral tissue such as adrenals. This analysis was made possible at the level of one single tissue corresponding to one animal by the use of sensitive methods that allow assay of TH activity, protein, and mRNA levels in parallel from the same homogenate. The three parameters were measured in brain structures and adrenals of rats maintained at 4 degrees C during 4 days and were compared to those of control animals kept at normal housing temperature (22 degrees C). LC of rats exposed to cold contained 200% more TH mRNA than controls. The amount of TH protein in this area rose to as much as 164% that of controls. Similarly, the activity of the enzyme increased to 140% of the normal value. Thus, these observations show that 1) the increase in TH mRNA was much higher than the increase in protein levels, and that 2) the newly synthesized molecules have about the same activity as that present under normal conditions. In contrast to the LC, no variation of these parameters was observed in the substantia nigra. In the adrenals, the variations in the different parameters were qualitatively similar to that observed in the LC, although they were quantitatively higher: TH mRNA, TH protein, and TH activity levels were respectively 330%, 182%, and 167% that of control adrenals. Altogether, these results demonstrate that exposure to cold induces an alteration in TH synthesis in brain noradrenergic neurons as well as in adrenals.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验