Jespers Sander, Schlautmann Stefan, Gardeniers Han, De Malsche Wim, Lynen Frederic, Desmet Gert
Vrije Universiteit Brussel , Department of Chemical Engineering, Pleinlaan 2, 1050 Brussels, Belgium.
Mesoscale Chemical Systems, MESA+ Institute for Nanotechnology, University of Twente , 7522 NB Enschede, The Netherlands.
Anal Chem. 2017 Nov 7;89(21):11605-11613. doi: 10.1021/acs.analchem.7b03036. Epub 2017 Oct 23.
On the basis of our previous work on the design of pillar array columns for liquid chromatography, we report on a new pillar array design for high-efficiency, high volumetric loadability gas chromatography columns. The proposed pillar array configuration leads to a column design which can either be considered as a packed bed with perfectly ordered and uniform flow paths or as multicapillary columns (8 parallel tracks) with a maximal interconnectivity between the flow paths to avoid the so-called polydispersity effect (dispersion arising from the inevitable differences in migration velocity between parallel flow paths). Despite our relative inexperience with column coating, and most probably (not supported by data) suffering from the same problem of stationary phase pooling in the right-angled corners of the flow-through channels as other chip-based GC devices, the efficiencies obtained in a L = 70 cm long and 75 μm deep and 6.195 mm wide chip for, respectively, quasi-unretained and retained components (k = 7) went up to N = 60 000 and 12 500 under isothermal conditions using H as carrier gas and a downstream restriction. Under programmed temperature conditions (T = 80 °C, T = 175 °C at 30 °C/min, and a H flow of 0.4 mL/min), a peak capacity of 170 was obtained in 3.6 min. For retained compounds, the optimal flow rate is found to be on the order of 0.4 mL/min, achieved at an operating pressure of 2.3 bar. Intrinsically, the column combines the efficiency of a 75 μm capillary with the volumetric loadability of a 240 μm capillary.
基于我们之前在液相色谱柱阵列设计方面的工作,我们报告了一种用于高效、高容量负载气相色谱柱的新型柱阵列设计。所提出的柱阵列结构导致了一种柱设计,它既可以被视为具有完美有序且均匀流动路径的填充床,也可以被视为多毛细管柱(8个平行通道),其流动路径之间具有最大的互连性,以避免所谓的多分散效应(由于平行流动路径之间迁移速度不可避免的差异而产生的分散)。尽管我们在柱涂覆方面相对缺乏经验,而且很可能(尚无数据支持)与其他基于芯片的气相色谱设备一样,在流通通道的直角角落存在固定相聚集的问题,但在一根长L = 70 cm、深75 μm、宽6.195 mm的芯片中,分别针对准不保留和保留组分(k = 7),在等温条件下使用H作为载气并设置下游限流的情况下,效率分别达到了N = 60000和12500。在程序升温条件下(T = 80 °C,以30 °C/min升至T = 175 °C,H流速为0.4 mL/min),在3.6分钟内获得了170的峰容量。对于保留化合物,发现最佳流速约为0.4 mL/min,在2.3 bar的操作压力下实现。本质上,该柱结合了75 μm毛细管的效率和240 μm毛细管的容量负载能力。