Suppr超能文献

运用分类树方法识别耐多药结核病的危险因素

Identification of Risk Factors of Multidrug-Resistant Tuberculosis by using Classification Tree Method.

作者信息

Tan Dixin, Wang Bin, Li Xuhui, Cai Xiaonan, Zhang Dandan, Li Mengyu, Tang Cong, Yan Yaqiong, Yu Songlin, Chu Qian, Xu Yihua

机构信息

The Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.

出版信息

Am J Trop Med Hyg. 2017 Dec;97(6):1720-1725. doi: 10.4269/ajtmh.17-0029. Epub 2017 Sep 21.

Abstract

Multidrug-resistant tuberculosis (MDR-TB) has become a major public health problem. We tried to apply the classification tree model in building and evaluating a risk prediction model for MDR-TB. In this case-control study, 74 newly diagnosed MDR-TB patients served as the case group, and 95 patients without TB from the same medical institution served as the control group. The classification tree model was built using Chi-square Automatic Interaction Detectormethod and evaluated by income diagram, index map, risk statistic, and the area under receiver operating characteristic (ROC) curve. Four explanatory variables (history of exposure to TB patients, family with financial difficulties, history of other chronic respiratory diseases, and history of smoking) were included in the prediction model. The risk statistic of misclassification probability of the model was 0.160, and the area under ROC curve was 0.838 ( < 0.01). These suggest that the classification tree model works well for predicting MDR-TB. Classification tree model can not only predict the risk of MDR-TB effectively but also can reveal the interactions among variables.

摘要

耐多药结核病(MDR-TB)已成为一个重大的公共卫生问题。我们试图将分类树模型应用于构建和评估耐多药结核病的风险预测模型。在这项病例对照研究中,74例新诊断的耐多药结核病患者作为病例组,95例来自同一医疗机构的非结核病患者作为对照组。采用卡方自动交互检测法构建分类树模型,并通过收益图、指标图、风险统计量以及受试者工作特征(ROC)曲线下面积进行评估。预测模型纳入了四个解释变量(接触结核病患者史、家庭经济困难、其他慢性呼吸道疾病史和吸烟史)。该模型误分类概率的风险统计量为0.160,ROC曲线下面积为0.838(<0.01)。这些表明分类树模型在预测耐多药结核病方面效果良好。分类树模型不仅可以有效预测耐多药结核病的风险,还可以揭示变量之间的相互作用。

相似文献

5
Prevalence of drug resistant Mycobacterium tuberculosis among children in China.中国儿童耐多药结核分枝杆菌的流行情况。
Tuberculosis (Edinb). 2015 May;95(3):315-20. doi: 10.1016/j.tube.2015.02.041. Epub 2015 Feb 21.

本文引用的文献

3
Multidrug-resistant tuberculosis in Europe, 2010-2011.2010 - 2011年欧洲的耐多药结核病
Emerg Infect Dis. 2015 Mar;21(3):409-16. doi: 10.3201/eid2103.141343.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验