Inorganic Chemistry Department, Taras Shevchenko National University of Kyiv , Volodimirska Str. 64, Kyiv 01033, Ukraine.
Institut für Anorganische Chemie, Universität Leipzig , Johannisallee 29, Leipzig D-04103, Germany.
Inorg Chem. 2017 Nov 6;56(21):12952-12966. doi: 10.1021/acs.inorgchem.7b01735. Epub 2017 Oct 11.
We investigated the coordination ability of the bis(1,2,4-triazolyl) module, trpr = 1,3-bis(1,2,4-triazol-4-yl)propane, toward the engineering of solid-state structures of copper polyoxomolybdates utilizing a composition space diagram approach. Different binding modes of the ligand including [N-N]-bridging and N-terminal coordination and the existence of favorable conformation forms (anti/anti, gauche/anti, and gauche/gauche) resulted in varieties of mixed metal Cu/Mo and Cu/Mo coordination polymers prepared under hydrothermal conditions. The composition space analysis employed was aimed at both the development of new coordination solids and their crystallization fields through systematic changes of the reagent ratios [copper(II) and molybdenum(VI) oxide precursors and the trpr ligand]. Nine coordination compounds were synthesized and structurally characterized. The diverse coordination architectures of the compounds are composed of cationic fragments such as [Cu(μ-OH)(μ-tr)], [Cu(μ-tr)], [Cu(μ-tr)], etc., connected to polymeric arrays by anionic species (molybdate MoO, isomeric α-, δ-, and β-octamolybdates {MoO} or {MoOH}). The inorganic copper(I,II)/molybdenum(VI) oxide matrix itself forms discrete or low-dimensional subtopological motifs (0D, 1D, or 2D), while the organic spacers interconnect them into higher-dimensional networks. The 3D coordination hybrids show moderate thermal stability up to 230-250 °C, while for the 2D compounds, the stability of the framework is distinctly lower (∼190 °C). The magnetic properties of the most representative samples were investigated. The magnetic interactions were rationalized in terms of analyzing the planes of the magnetic orbitals.
我们研究了双(1,2,4-三唑基)模块(trpr = 1,3-双(1,2,4-三唑-4-基)丙烷)的配位能力,利用组成空间图方法来设计铜多氧钼酸盐的固态结构。配体的不同结合模式,包括[N-N]-桥接和 N-末端配位,以及有利构象形式(反/反, gauche/反,和 gauche/gauche)的存在,导致在水热条件下制备了各种混合金属 Cu/Mo 和 Cu/Mo 配位聚合物。所采用的组成空间分析旨在通过系统改变试剂比(铜(II)和钼(VI)氧化物前体和 trpr 配体)来开发新的配位固体及其结晶场。合成并结构表征了九个配位化合物。这些化合物的不同配位结构由阳离子片段组成,如[Cu(μ-OH)(μ-tr)]、[Cu(μ-tr)]、[Cu(μ-tr)]等,通过阴离子物种(钼酸盐 MoO、异构α-、δ-和β-八钼酸盐{MoO}或{MoOH})连接到聚合物阵列中。无机铜(I,II)/钼(VI)氧化物基质本身形成离散或低维亚拓扑基元(0D、1D 或 2D),而有机间隔物将它们相互连接成更高维网络。3D 配位杂化物在 230-250°C 之间表现出中等的热稳定性,而对于 2D 化合物,框架的稳定性明显较低(约 190°C)。对最具代表性的样品进行了磁性研究。根据分析磁轨道的平面,对磁相互作用进行了合理化。