Electrochemical Energy, Catalysis and Material Science Laboratory, Department of Chemistry, Technical University Berlin , 10623 Berlin, Germany.
Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH , 52425 Jülich, Germany.
J Am Chem Soc. 2017 Nov 22;139(46):16536-16547. doi: 10.1021/jacs.7b06846. Epub 2017 Nov 7.
Shape-controlled octahedral Pt-Ni alloy nanoparticles exhibit remarkably high activities for the electroreduction of molecular oxygen (oxygen reduction reaction, ORR), which makes them fuel-cell cathode catalysts with exceptional potential. To unfold their full and optimized catalytic activity and stability, however, the nano-octahedra require post-synthesis thermal treatments, which alter the surface atomic structure and composition of the crystal facets. Here, we address and strive to elucidate the underlying surface chemical processes using a combination of ex situ analytical techniques with in situ transmission electron microscopy (TEM), in situ X-ray diffraction (XRD), and in situ electrochemical Fourier transformed infrared (FTIR) experiments. We present a robust fundamental correlation between annealing temperature and catalytic activity, where a ∼25 times higher ORR activity than for commercial Pt/C (2.7 A mg at 0.9 V) was reproducibly observed upon annealing at 300 °C. The electrochemical stability, however, peaked out at the most severe heat treatments at 500 °C. Aberration-corrected scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy (EDX) in combination with in situ electrochemical CO stripping/FTIR data revealed subtle, but important, differences in the formation and chemical nature of Pt-rich and Ni-rich surface domains in the octahedral (111) facets. Estimating trends in surface chemisorption energies from in situ electrochemical CO/FTIR investigations suggested that balanced annealing generates an optimal degree of Pt surface enrichment, while the others exhibited mostly Ni-rich facets. The insights from our study are quite generally valid and aid in developing suitable post-synthesis thermal treatments for other alloy nanocatalysts as well.
具有规则八面体形状的 Pt-Ni 合金纳米粒子在分子氧的电化学还原(氧还原反应,ORR)中表现出极高的活性,这使它们成为具有巨大潜力的燃料电池阴极催化剂。然而,为了充分发挥其催化活性和稳定性,纳米八面体需要经过合成后的热处理,这会改变晶体各面的表面原子结构和组成。在这里,我们采用一系列原位透射电子显微镜(TEM)、原位 X 射线衍射(XRD)和原位电化学傅里叶变换红外光谱(FTIR)实验结合的方法,研究并阐明了这些纳米粒子的表面化学过程。我们提出了一个退火温度与催化活性之间的基本相关性,即在 300°C 退火时,其 ORR 活性比商用 Pt/C(在 0.9 V 时为 2.7 A mg)高 25 倍。然而,电化学稳定性在 500°C 的最剧烈热处理时达到峰值。通过对具有像差校正功能的扫描透射电子显微镜和能量色散 X 射线能谱(EDX)的分析,以及与原位电化学 CO 剥离/FTIR 数据的结合,我们发现了在八面体(111)晶面中富 Pt 和富 Ni 表面区域形成和化学性质方面的细微但重要的差异。通过原位电化学 CO/FTIR 研究来估计表面化学吸附能的趋势表明,平衡退火会产生最佳程度的 Pt 表面富集,而其他情况则主要表现为富 Ni 表面。我们的研究结果具有普遍的适用性,有助于为其他合金纳米催化剂的合成后热处理提供合适的方案。