Department of Biology, Texas A&M University, College Station, Texas 77843
College of Biological Sciences, University of Minnesota, St. Paul, Minnesota 55108.
Genetics. 2017 Dec;207(4):1621-1629. doi: 10.1534/genetics.117.300382. Epub 2017 Oct 11.
The evolution of heteromorphic sex chromosomes has fascinated biologists, inspiring theoretical models, experimental studies, and studies of genome structure. This work has produced a clear model, in which heteromorphic sex chromosomes result from repeated fixations of inversions (or other recombination suppression mechanisms) that tether sexually antagonistic alleles to sex-determining regions, followed by the degeneration of these regions induced by the lack of sex chromosome recombination in the heterogametic sex. However, current models do not predict if inversions are expected to preferentially accumulate on one sex-chromosome or another, and do not address if inversions can accumulate even when they cause difficulties in pairing between heteromorphic chromosomes in the heterogametic sex increasing aneuploidy or meiotic arrest. To address these questions, we developed a population genetic model in which the sex chromosome aneuploidy rate is elevated when males carry an inversion on either the X or Y chromosome. We show that inversions fix more easily when male-beneficial alleles are dominant, and that inversions on the Y chromosome fix with lower selection coefficients than comparable X chromosome inversions. We further show that sex-chromosome inversions can often invade and fix despite causing a substantial increase in the risk of aneuploidy. As sexual antagonism can lead to the fixation of inversions that increase sex chromosomes aneuploidy (which underlies genetic diseases including Klinefelter and Turner syndrome in humans) selection could subsequently favor diverse mechanisms to reduce aneuploidy-including alternative meiotic mechanisms, translocations to, and fusions with, the sex chromosomes, and sex chromosome turnover.
异型性染色体的进化一直令生物学家着迷,激发了理论模型、实验研究和基因组结构研究。这项工作产生了一个明确的模型,其中异型性染色体是由重复固定的倒位(或其他重组抑制机制)产生的,这些倒位将性拮抗等位基因固定在性别决定区域,随后由于异型配子缺乏性染色体重组,这些区域退化。然而,目前的模型并不能预测倒位是否会优先积累在一条性染色体上,也不能解决倒位是否可以积累,即使它们在异型染色体之间的配对中造成困难,增加非整倍体或减数分裂停滞。为了解决这些问题,我们开发了一个群体遗传模型,其中当雄性携带 X 或 Y 染色体上的倒位时,性染色体非整倍体率会升高。我们表明,当雄性有益等位基因是显性时,倒位更容易固定,并且 Y 染色体上的倒位比可比的 X 染色体倒位固定的选择系数更低。我们进一步表明,尽管性染色体倒位会导致非整倍体风险显著增加,但它们通常可以入侵和固定。由于性拮抗作用可能导致增加性染色体非整倍体的倒位固定(这是人类包括克莱恩费尔特综合征和特纳综合征在内的遗传疾病的基础),选择随后可能有利于多种降低非整倍体的机制,包括替代减数分裂机制、易位到性染色体上以及与性染色体融合,以及性染色体替换。