Walton Travis, Szostak Jack W
Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital , Boston, Massachusetts 02114, United States.
Biochemistry. 2017 Oct 31;56(43):5739-5747. doi: 10.1021/acs.biochem.7b00792. Epub 2017 Oct 19.
The nonenzymatic polymerization of RNA may have enabled copying of functional sequences during the origin of life. Recent progress utilizing 5'-phosphoro-2-aminoimidazole activation has reinvigorated the possibility of using nonenzymatic RNA polymerization for copying arbitrary sequences. However, the reasons why 2-aminoimidazole (AI) is a superior activation group remain unclear. Here we report that the predominant mechanism of polymerization using cytidine-5'-phosphoro-2-aminoimidazolide (Cp*) involves a 2-aminoimidazolium-bridged dinucleotide (CppC) intermediate. To explore the role of this intermediate, we first identify and quantify four reactions involving the synthesis and breakdown of CppC that occur in the absence of the primer-template duplex. We then analyze the dependence of the rate of polymerization on the concentration of the CppC intermediate in the presence and absence of the competitive inhibitor Cp. We also show that the contribution of the monomer Cp to the polymerization rate is negligible under our primer extension conditions. Finally, we use the experimentally determined rate constants of these reactions to develop a kinetic model that helps explain the changing rate of nonenzymatic RNA polymerization over time. Our model accounts for the concentration of CppC formed by Cp under primer extension conditions. The model does not completely account for the decline in polymerization rate observed over long times, which indicates that additional important inhibitory processes have not yet been identified. Our results suggest that the superiority of 2-aminoimidazole over the traditional 2-methylimidazole activation is mostly due to the higher level of accumulation of the imidazolium-bridged intermediate under primer extension conditions.
RNA的非酶促聚合可能在生命起源过程中实现了功能序列的复制。利用5'-磷酰-2-氨基咪唑活化的最新进展,重新激发了使用非酶促RNA聚合来复制任意序列的可能性。然而,2-氨基咪唑(AI)作为一种优越的活化基团的原因仍不清楚。在此,我们报告使用胞苷-5'-磷酰-2-氨基咪唑(Cp*)进行聚合的主要机制涉及一种2-氨基咪唑鎓桥连二核苷酸(CppC)中间体。为了探究这种中间体的作用,我们首先识别并量化了在没有引物-模板双链体的情况下发生的涉及CppC合成和分解的四个反应。然后,我们分析了在存在和不存在竞争性抑制剂Cp的情况下,聚合速率对CppC中间体浓度的依赖性。我们还表明,在我们的引物延伸条件下,单体Cp对聚合速率的贡献可以忽略不计。最后,我们使用这些反应的实验测定速率常数来建立一个动力学模型,该模型有助于解释非酶促RNA聚合速率随时间的变化。我们的模型考虑了引物延伸条件下由Cp形成的CppC的浓度。该模型并未完全解释长时间观察到的聚合速率下降,这表明尚未识别出其他重要的抑制过程。我们的结果表明,2-氨基咪唑相对于传统的2-甲基咪唑活化的优越性主要归因于引物延伸条件下咪唑鎓桥连中间体的更高积累水平。