Suppr超能文献

结构变形 MoS 用于电化学稳定、耐热和高效的析氢反应。

Structurally Deformed MoS for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction.

机构信息

School of Engineering, University of California, Merced, CA, 95343, USA.

Molecular Foundry, Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA.

出版信息

Adv Mater. 2017 Nov;29(44). doi: 10.1002/adma.201703863. Epub 2017 Oct 12.

Abstract

The emerging molybdenum disulfide (MoS ) offers intriguing possibilities for realizing a transformative new catalyst for driving the hydrogen evolution reaction (HER). However, the trade-off between catalytic activity and long-term stability represents a formidable challenge and has not been extensively addressed. This study reports that metastable and temperature-sensitive chemically exfoliated MoS (ce-MoS ) can be made into electrochemically stable (5000 cycles), and thermally robust (300 °C) while maintaining synthetic scalability and excellent catalytic activity through physical-transformation into 3D structurally deformed nanostructures. The dimensional transition enabled by a high throughput electrohydrodynamic process provides highly accessible, and electrochemically active surface area and facilitates efficient transport across various interfaces. Meanwhile, the hierarchically strained morphology is found to improve electronic coupling between active sites and current collecting substrates without the need for selective engineering the electronically heterogeneous interfaces. Specifically, the synergistic combination of high strain load stemmed from capillarity-induced-self-crumpling and sulfur (S) vacancies intrinsic to chemical exfoliation enables simultaneous modulation of active site density and intrinsic HER activity regardless of continuous operation or elevated temperature. These results provide new insights into how catalytic activity, electrochemical-, and thermal stability can be concurrently enhanced through the physical transformation that is reminiscent of nature, in which properties of biological materials emerge from evolved dimensional transitions.

摘要

新兴的二硫化钼 (MoS ) 为实现驱动析氢反应 (HER) 的变革性新型催化剂提供了诱人的可能性。然而,催化活性和长期稳定性之间的权衡是一个巨大的挑战,尚未得到广泛解决。本研究表明,通过物理转化为 3D 结构变形纳米结构,可以将亚稳且对温度敏感的化学剥离 MoS (ce-MoS ) 制成电化学稳定(5000 次循环)和热稳定(300°C)的材料,同时保持合成可扩展性和优异的催化活性。高通量电流体动力学过程实现的维度转变提供了高可及性和电化学活性表面积,并促进了在各种界面之间的有效传输。同时,分层应变形态被发现可以改善活性位点和集流基底之间的电子耦合,而无需选择性地工程电子异质界面。具体而言,毛细诱导自卷曲和化学剥离固有的硫 (S) 空位引起的高应变负载的协同组合,能够在连续操作或升高温度的情况下,同时调节活性位点密度和内在 HER 活性。这些结果提供了新的见解,即通过类似于自然界的物理转化,可以同时增强催化活性、电化学和热稳定性,在自然界中,生物材料的特性源自进化的维度转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验