Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
University of Dundee, Dundee, UK.
Pharmacoepidemiol Drug Saf. 2017 Dec;26(12):1527-1533. doi: 10.1002/pds.4327. Epub 2017 Oct 12.
To demonstrate a modelling approach that controls for time-invariant allocation bias in estimation of associations of outcome with drug exposure.
We show that in a model that includes terms for both ever-exposure versus never-exposure and cumulative exposure, the parameter for ever-exposure represents the effect of time-invariant allocation bias, and the parameter for cumulative exposure represents the effect of the drug after adjustment for this unmeasured confounding. This assumes no stepwise effect of the drug on the event rate, no reverse causation, and no unmeasured time-varying confounders. We demonstrated this by modelling the effect of statins on cardiovascular disease, for which the true effect has been well characterised in randomised trials, using time-updated Cox regression models in a national cohort of Type 2 diabetes patients.
The crude hazard ratio associated with ever-use of statins was 1.13 in a standard cohort analysis comparing exposed with unexposed person-time intervals. When ever-never use and cumulative exposure are modelled jointly, the effect of statins can be estimated from the cumulative exposure parameter (hazard ratio 0.97 per year of exposure, 95% CI 0.97 to 0.98). The ever-exposed term (hazard ratio 1.20, 1.16 to 1.23) in this model can be interpreted as estimating the allocation bias.
Where stepwise effects on the risk of adverse events are unlikely, as for instance for effects on risk of cancer, joint modelling of ever-never and cumulative exposure can be used to study the effects of multiple drugs and to distinguish causal effects from confounding by allocation.
展示一种建模方法,该方法可控制在估计结局与药物暴露之间的关联时,由固定不变的分配偏倚引起的偏倚。
我们表明,在一个包含既往暴露与从不暴露以及累积暴露的模型中,既往暴露参数代表固定不变的分配偏倚的影响,而累积暴露参数代表在调整这种未测量的混杂因素后,药物的影响。这假设药物对事件发生率没有逐步影响,不存在反向因果关系,也没有未测量的随时间变化的混杂因素。我们通过使用全国范围内 2 型糖尿病患者队列中的时间更新 Cox 回归模型,对他汀类药物对心血管疾病的影响进行建模,证明了这一点。他汀类药物的真实效果在随机试验中已得到很好的描述。
在比较暴露与未暴露的个体时间间隔的标准队列分析中,与他汀类药物的既往使用相关的粗危险比为 1.13。当联合建模既往-从未使用和累积暴露时,可以从累积暴露参数估计他汀类药物的效果(暴露 1 年的危险比为 0.97,95%CI 为 0.97 至 0.98)。在这个模型中,既往暴露的参数(危险比为 1.20,1.16 至 1.23)可以解释为估计分配偏倚。
在逐步影响不良事件风险的可能性不大的情况下,例如对癌症风险的影响,既往-从未使用和累积暴露的联合建模可用于研究多种药物的效果,并区分因果效应和由分配引起的混杂。