Yang Leping, Zhu Yuan-En, Sheng Jian, Li Feng, Tang Bin, Zhang Yue, Zhou Zhen
School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300350, China.
Small. 2017 Dec;13(46). doi: 10.1002/smll.201702588. Epub 2017 Oct 12.
Homogeneous ultrasmall T-Nb O nanocrystallites encapsulated in 1D carbon nanofibers (T-Nb O /CNFs) are prepared through electrospinning followed by subsequent pyrolysis treatment. In a Na half-cell configuration, the obtained T-Nb O /CNFs with the merits of unique microstructures and inherent pseudocapacitance, deliver a stable capacity of 150 mAh g at 1 A g over 5000 cycles. Even at an ultrahigh charge-discharge rate of 8 A g , a high reversible capacity of 97 mAh g is still achieved. By means of kinetic analysis, it is demonstrated that the larger ratio of surface Faradaic reactions of Nb O at high rates is the major factor to achieve excellent rate performance. The prolonged cycle durability and excellent rate performance endows T-Nb O /CNFs with potentials as anode materials for sodium-ion batteries.
通过静电纺丝并随后进行热解处理,制备出包裹在一维碳纳米纤维中的均匀超小T-Nb O纳米微晶(T-Nb O /CNFs)。在钠半电池配置中,所获得的具有独特微观结构和固有赝电容优点的T-Nb O /CNFs,在1 A g下经过5000次循环可提供150 mAh g的稳定容量。即使在8 A g的超高充放电速率下,仍可实现97 mAh g的高可逆容量。通过动力学分析表明,在高速率下Nb O的表面法拉第反应比例较大是实现优异倍率性能的主要因素。延长的循环耐久性和优异的倍率性能赋予T-Nb O /CNFs作为钠离子电池负极材料的潜力。