Suppr超能文献

一项县级正偏离横断面分析,以评估印第安纳州的多种人群健康结果。

A county-level cross-sectional analysis of positive deviance to assess multiple population health outcomes in Indiana.

作者信息

Hendryx Michael, Guerra-Reyes Lucia, Holland Benjamin D, McGinnis Michael Dean, Meanwell Emily, Middlestadt Susan E, Yoder Karen M

机构信息

Department of Environmental and Occupational Health, Indiana University, Bloomington, Indiana, USA.

Department of Applied Health Science, Indiana University, Bloomington, Indiana, USA.

出版信息

BMJ Open. 2017 Oct 11;7(10):e017370. doi: 10.1136/bmjopen-2017-017370.

Abstract

OBJECTIVE

To test a positive deviance method to identify counties that are performing better than statistical expectations on a set of population health indicators.

DESIGN

Quantitative, cross-sectional county-level secondary analysis of risk variables and outcomes in Indiana. Data are analysed using multiple linear regression to identify counties performing better or worse than expected given traditional risk indicators, with a focus on 'positive deviants' or counties performing better than expected.

PARTICIPANTS

Counties in Indiana (n=92) constitute the unit of analysis.

MAIN OUTCOME MEASURES

Per cent adult obesity, per cent fair/poor health, low birth weight per cent, per cent with diabetes, years of potential life lost, colorectal cancer incidence rate and circulatory disease mortality rate.

RESULTS

County performance that outperforms expectations is for the most part outcome specific. But there are a few counties that performed particularly well across most measures.

CONCLUSIONS

The positive deviance approach provides a means for state and local public health departments to identify places that show better health outcomes despite demographic, social, economic or behavioural disadvantage. These places may serve as case studies or models for subsequent investigations to uncover best practices in the face of adversity and generalise effective approaches to other areas.

摘要

目的

测试一种正向偏差方法,以识别在一系列人群健康指标方面表现优于统计预期的县。

设计

对印第安纳州的风险变量和结果进行定量的县级横断面二次分析。使用多元线性回归分析数据,以识别在给定传统风险指标的情况下表现优于或劣于预期的县,重点关注“正向偏差县”或表现优于预期的县。

参与者

印第安纳州的县(n = 92)构成分析单位。

主要观察指标

成人肥胖百分比、健康状况一般/较差百分比、低出生体重百分比、糖尿病患者百分比、潜在寿命损失年数、结直肠癌发病率和循环系统疾病死亡率。

结果

表现优于预期的县的情况在很大程度上因结果而异。但有几个县在大多数指标上表现特别出色。

结论

正向偏差方法为州和地方公共卫生部门提供了一种手段,以识别尽管存在人口、社会、经济或行为方面的不利因素,但仍有较好健康结果的地区。这些地区可作为案例研究或模型,用于后续调查,以揭示面对逆境时的最佳做法,并将有效方法推广到其他地区。

相似文献

本文引用的文献

9
The County Health Rankings: rationale and methods.《县健康排名:原理与方法》
Popul Health Metr. 2015 Apr 17;13:11. doi: 10.1186/s12963-015-0044-2. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验