Lee Fu-Ying, Wu Zong-Zhe, Kao Li-Chi, Chang Feng-Mei, Chen Sheng-Wen, JangJian Shiu-Ko, Cheng Hui-Yu, Chen Wei-Liang, Chang Yu-Ming, Lo Kuang Yao
Department of Physics, National Cheng Kung University, Tainan, 701, Taiwan.
Taiwan Semiconductur Manufacturing Company, Tainan, Taiwan.
Sci Rep. 2017 Oct 12;7(1):13022. doi: 10.1038/s41598-017-13415-y.
Further scale down the dimension of silicon-based integrated circuit is a crucial trend in semiconductor fabrication. One of the most critical issues in the nano-device fabrication is to confirm the atomic structure evolution of the ultrathin shallow junction. In this report, UV Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and reflective second harmonic generation (RSHG) are utilized to monitor the pulse laser induced atomic structure evolution of ultralow-energy high-dose Boron implanted Si(110) at room and cold substrate temperature. A peak feature around 480 cm resolved in UV Raman spectra indicates the formation of Si-B bond after the laser irradiation. The red shift of binding energy of Si element (99 eV) in XPS and the evolution of absorption peak (196.2 eV) in XANES reveal that the changes in the chemical states of ultra shallow junction strongly correlate to the activation process of Boron implantation, which is confirmed by RSHG measurement. The substrate temperature effect in the recrystallization of Boron implanted region is also realized by cross-section high-resolution TEM (HRTEM). The phenomena of Si-B bond formation and ultra-shallow junction recrystallization can be traced and applied to improve the reliability of Si ultra shallow junction in the future.
进一步缩小硅基集成电路的尺寸是半导体制造中的一个关键趋势。纳米器件制造中最关键的问题之一是确认超薄浅结的原子结构演变。在本报告中,利用紫外拉曼光谱、X射线光电子能谱(XPS)、X射线吸收近边结构(XANES)和反射二次谐波产生(RSHG)来监测室温及低温衬底温度下脉冲激光诱导的超低能高剂量硼注入Si(110)的原子结构演变。紫外拉曼光谱中分辨出的约480 cm处的一个峰特征表明激光辐照后形成了Si-B键。XPS中Si元素结合能(约99 eV)的红移以及XANES中吸收峰(约196.2 eV)的演变表明,超浅结化学态的变化与硼注入的激活过程密切相关,这一点通过RSHG测量得到了证实。通过横截面高分辨率透射电子显微镜(HRTEM)也实现了硼注入区再结晶过程中的衬底温度效应。Si-B键形成和超浅结再结晶的现象可以被追踪,并应用于未来提高Si超浅结的可靠性。