Yang Jianke
Opt Lett. 2017 Oct 15;42(20):4067-4070. doi: 10.1364/OL.42.004067.
Paraxial linear propagation of light in an optical waveguide with material gain and loss is governed by a Schrödinger equation with a complex potential. In this Letter, new classes of non-parity-time (PT)-symmetric complex potentials featuring conjugate-pair eigenvalue symmetry are constructed by operator symmetry methods. Due to this eigenvalue symmetry, it is shown that the spectrum of these complex potentials is often all-real. Under parameter tuning in these potentials, a phase transition can also occur, where pairs of complex eigenvalues appear in the spectrum. A distinctive feature of the phase transition here is that the complex eigenvalues may bifurcate out from an interior continuous eigenvalue inside the continuous spectrum; hence, a phase transition takes place without going through an exceptional point. In one spatial dimension, this class of non-PT-symmetric complex potentials is of the form V(x)=h(x)-h(x), where h(x) is an arbitrary PT-symmetric complex function. These potentials in two spatial dimensions are also derived. Diffraction patterns in these complex potentials are further examined, and unidirectional propagation behaviors are demonstrated.
光在具有材料增益和损耗的光波导中的傍轴线性传播由一个具有复势的薛定谔方程描述。在本信函中,通过算符对称方法构造了具有共轭对本征值对称性的新型非宇称时间(PT)对称复势。由于这种本征值对称性,结果表明这些复势的谱通常全为实值。在这些势中的参数调谐下,也会发生相变,此时谱中会出现成对的复本征值。此处相变的一个显著特征是复本征值可能从连续谱内部的一个内部连续本征值处分支出来;因此,相变发生时无需经过一个例外点。在一维空间中,这类非PT对称复势的形式为V(x)=h(x)-h(x),其中h(x)是任意的PT对称复函数。还推导了这些势在二维空间中的形式。进一步研究了这些复势中的衍射图样,并展示了单向传播行为。