Suppr超能文献

MPIGeneNet:多核集群上基因共表达网络的并行计算。

MPIGeneNet: Parallel Calculation of Gene Co-Expression Networks on Multicore Clusters.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 Sep-Oct;15(5):1732-1737. doi: 10.1109/TCBB.2017.2761340. Epub 2017 Oct 10.

Abstract

In this work, we present MPIGeneNet, a parallel tool that applies Pearson's correlation and Random Matrix Theory to construct gene co-expression networks. It is based on the state-of-the-art sequential tool RMTGeneNet, which provides networks with high robustness and sensitivity at the expenses of relatively long runtimes for large scale input datasets. MPIGeneNet returns the same results as RMTGeneNet but improves the memory management, reduces the I/O cost, and accelerates the two most computationally demanding steps of co-expression network construction by exploiting the compute capabilities of common multicore CPU clusters. Our performance evaluation on two different systems using three typical input datasets shows that MPIGeneNet is significantly faster than RMTGeneNet. As an example, our tool is up to 175.41 times faster on a cluster with eight nodes, each one containing two 12-core Intel Haswell processors. The source code of MPIGeneNet, as well as a reference manual, are available at https://sourceforge.net/projects/mpigenenet/.

摘要

在这项工作中,我们提出了 MPIGeneNet,这是一个并行工具,它应用皮尔逊相关系数和随机矩阵理论来构建基因共表达网络。它基于最先进的顺序工具 RMTGeneNet,该工具以相对较长的运行时间为代价,为大规模输入数据集提供了高稳健性和灵敏度的网络。MPIGeneNet 产生与 RMTGeneNet 相同的结果,但通过利用常见多核 CPU 集群的计算能力改进了内存管理,降低了 I/O 成本,并加速了构建共表达网络的两个最计算密集型步骤。我们使用三个典型输入数据集在两个不同系统上的性能评估表明,MPIGeneNet 比 RMTGeneNet 快得多。例如,我们的工具在一个包含八个节点的集群上的速度快 175.41 倍,每个节点包含两个 12 核英特尔至强 Haswell 处理器。MPIGeneNet 的源代码以及参考手册可在 https://sourceforge.net/projects/mpigenenet/ 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验