Flores Luis A, Murphy Julia G, Copeland William B, Dixon David A
Department of Chemistry, The University of Alabama , Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States.
J Phys Chem A. 2017 Nov 9;121(44):8518-8524. doi: 10.1021/acs.jpca.7b09107. Epub 2017 Oct 25.
Adsorption of CO to uranium oxide, (UO), clusters was modeled using density functional theory (DFT) and coupled cluster theory (CCSD(T)). Geometries and reaction energies were predicted for carbonate formation (chemisorption) and Lewis acid-base addition of CO (physisorption) to these (UO) clusters. Chemisorption of multiple CO moieties was also modeled for dimer and trimer clusters. Physisorption and chemisorption were both predicted to be thermodynamically allowed for (UO) clusters, with chemisorption being more thermodynamically favorable than physisorption. The most energetically favored (UO)(CO) clusters contain tridentate carbonates, which is consistent with solid-state and solution structures for uranyl carbonates. The calculations show that CO exposure is likely to convert (UO) to uranyl carbonates.
利用密度泛函理论(DFT)和耦合簇理论(CCSD(T))对一氧化碳(CO)在氧化铀(UO)团簇上的吸附进行了建模。预测了这些(UO)团簇形成碳酸盐(化学吸附)以及CO进行路易斯酸碱加成(物理吸附)的几何结构和反应能量。还对二聚体和三聚体团簇的多个CO部分的化学吸附进行了建模。对于(UO)团簇,物理吸附和化学吸附在热力学上都是可行的,其中化学吸附在热力学上比物理吸附更有利。能量上最有利的(UO)(CO)团簇包含三齿碳酸盐,这与铀酰碳酸盐的固态和溶液结构一致。计算结果表明,暴露于CO下可能会使(UO)转化为铀酰碳酸盐。