Suppr超能文献

Central respiratory effects of glutamine synthesis inhibition in dogs.

作者信息

Hoop B, Systrom D M, Shih V E, Kazemi H

机构信息

Medical Service (Pulmonary Unit), Massachusetts General Hospital, Boston.

出版信息

J Appl Physiol (1985). 1988 Sep;65(3):1099-109. doi: 10.1152/jappl.1988.65.3.1099.

Abstract

Glutamic acid is an excitatory neurotransmitter that may have a significant role in the central chemical drive of ventilation. Therefore cardiorespiratory function was measured in pentobarbital sodium-anesthetized dogs before and after central inhibition of glutamate metabolism by means of methionine sulfoximine (MSO), a specific inhibitor of glutamine synthase (GS) catalyzing amidation of glutamate to glutamine. GS was inhibited centrally by perfusing the ventriculocisternal space with artificial cerebrospinal fluid (CSF) containing 92.5 mmol MSO per liter at a fixed pH, perfusion rate, and pressure. After GS inhibition, CSF transfer rate of [13N]glutamine synthesized from 13NH4+ amidation of glutamate was reduced five-fold, and minute ventilation increased from 2.90 +/- 0.41 (SE) l/min (0.164 +/- 0.020 l.min-1.kg body wt-1) to 4.46 +/- 0.52 l/min (0.254 +/- 0.029 l.min-1.kg body wt-1). This increase in ventilation with endogenous glutamate and the increase in ventilation previously observed during ventriculocisternal perfusion of exogenous glutamate are compared quantitatively via a model of central neurotransmitter glutamate chemoreception. The results support the hypothesis that the endogenous brain glutamate is important in the central chemical drive of ventilation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验