German C R, Casciotti K A, Dutay J-C, Heimbürger L E, Jenkins W J, Measures C I, Mills R A, Obata H, Schlitzer R, Tagliabue A, Turner D R, Whitby H
Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, CA 94305, USA.
Philos Trans A Math Phys Eng Sci. 2016 Nov 28;374(2081). doi: 10.1098/rsta.2016.0035.
Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
热液活动发生在所有大洋盆地,向海洋中释放高浓度的关键微量元素和同位素(TEIs)。重要的是,通过湍流混合浮力热液羽流夹带整个海洋体积的计算速率非常强劲,可与深海热盐环流相媲美。因此,长期以来人们一直认为深海热液羽流中活跃的生物地球化学过程有可能影响全球尺度的生物地球化学循环。最近,全球海洋微量元素研究(GEOTRACES)的新结果表明,富含溶解铁(一种重要的微量营养素,在某些地区限制生产力)的羽流在大洋中脊上方广泛存在,并延伸到深海内部。虽然铁只是全球海洋微量元素研究感兴趣的全套TEIs中的一种元素,但这些初步结果很重要,因为它们说明了海底热液排放的输入可能如何影响许多其他TEIs的全球生物地球化学收支。然而,要确定海底热液排放对全球的影响,需要解决两个关键问题:(i)在靠近热液喷口处有哪些活跃过程调节通过非浮力热液羽流扩散的全套TEIs的初始高温热液通量?(ii)这些过程在全球范围内如何响应海底地质环境的变化和/或上覆海水的地球化学变化而变化?在本文中,我们回顾了该领域近期工作的关键发现,强调了该研究产生的一系列关键假设,并提出了一系列新的全球海洋微量元素研究建模、断面和过程研究,这些研究可以在国内和国际上实施,以解决这些问题。本文是主题为“海洋微量元素化学的生物和气候影响”的特刊的一部分。