Panagiotopoulou Olga, Iriarte-Diaz José, Wilshin Simon, Dechow Paul C, Taylor Andrea B, Mehari Abraha Hyab, Aljunid Sharifah F, Ross Callum F
Moving Morphology & Functional Mechanics Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia.
Department of Oral Biology, University of Illinois, 801 S. Paulina St., Chicago, IL 60612, USA.
Zoology (Jena). 2017 Oct;124:13-29. doi: 10.1016/j.zool.2017.08.010. Epub 2017 Sep 1.
Finite element analysis (FEA) is a commonly used tool in musculoskeletal biomechanics and vertebrate paleontology. The accuracy and precision of finite element models (FEMs) are reliant on accurate data on bone geometry, muscle forces, boundary conditions and tissue material properties. Simplified modeling assumptions, due to lack of in vivo experimental data on material properties and muscle activation patterns, may introduce analytical errors in analyses where quantitative accuracy is critical for obtaining rigorous results. A subject-specific FEM of a rhesus macaque mandible was constructed, loaded and validated using in vivo data from the same animal. In developing the model, we assessed the impact on model behavior of variation in (i) material properties of the mandibular trabecular bone tissue and teeth; (ii) constraints at the temporomandibular joint and bite point; and (iii) the timing of the muscle activity used to estimate the external forces acting on the model. The best match between the FEA simulation and the in vivo experimental data resulted from modeling the trabecular tissue with an isotropic and homogeneous Young's modulus and Poisson's value of 10GPa and 0.3, respectively; constraining translations along X,Y, Z axes in the chewing (left) side temporomandibular joint, the premolars and the m; constraining the balancing (right) side temporomandibular joint in the anterior-posterior and superior-inferior axes, and using the muscle force estimated at time of maximum strain magnitude in the lower lateral gauge. The relative strain magnitudes in this model were similar to those recorded in vivo for all strain locations. More detailed analyses of mandibular strain patterns during the power stroke at different times in the chewing cycle are needed.
有限元分析(FEA)是肌肉骨骼生物力学和脊椎动物古生物学中常用的工具。有限元模型(FEMs)的准确性和精确性依赖于骨骼几何形状、肌肉力量、边界条件和组织材料特性的准确数据。由于缺乏关于材料特性和肌肉激活模式的体内实验数据,简化的建模假设可能会在定量准确性对于获得严格结果至关重要的分析中引入分析误差。使用来自同一只动物的体内数据构建、加载并验证了恒河猴下颌骨的个体特异性有限元模型。在开发模型时,我们评估了以下因素变化对模型行为的影响:(i)下颌骨小梁骨组织和牙齿的材料特性;(ii)颞下颌关节和咬合点的约束;(iii)用于估计作用于模型的外力的肌肉活动时间。有限元分析模拟与体内实验数据之间的最佳匹配结果是,对小梁组织采用各向同性且均匀的杨氏模量和泊松比分别为10GPa和0.3进行建模;在咀嚼(左侧)侧颞下颌关节、前磨牙和磨牙处约束沿X、Y、Z轴的平移;在前后和上下轴上约束平衡(右侧)侧颞下颌关节,并使用在下侧应变计中最大应变幅度时估计的肌肉力量。该模型中的相对应变幅度与所有应变位置在体内记录的应变幅度相似。需要对咀嚼周期中不同时间的动力冲程期间下颌骨应变模式进行更详细的分析。