Departamento de Procesos y Sistemas, Universidad Simón Bolívar, Sartenejas, Baruta, Miranda, Venezuela.
Laboratorio de Evolución, Universidad Simón Bolívar, Sartenejas, Baruta, Miranda, Venezuela.
PLoS One. 2017 Oct 17;12(10):e0185757. doi: 10.1371/journal.pone.0185757. eCollection 2017.
Polyphonic music files were analyzed using the set of symbols that produced the Minimal Entropy Description, which we call the Fundamental Scale. This allowed us to create a novel space to represent music pieces by developing: (a) a method to adjust a textual description from its original scale of observation to an arbitrarily selected scale, (b) a method to model the structure of any textual description based on the shape of the symbol frequency profiles, and (c) the concept of higher order entropy as the entropy associated with the deviations of a frequency-ranked symbol profile from a perfect Zipfian profile. We call this diversity index the '2nd Order Entropy'. Applying these methods to a variety of musical pieces showed how the space of 'symbolic specific diversity-entropy' and that of '2nd order entropy' captures characteristics that are unique to each music type, style, composer and genre. Some clustering of these properties around each musical category is shown. These methods allow us to visualize a historic trajectory of academic music across this space, from medieval to contemporary academic music. We show that the description of musical structures using entropy, symbol frequency profiles and specific symbolic diversity allows us to characterize traditional and popular expressions of music. These classification techniques promise to be useful in other disciplines for pattern recognition and machine learning.
多音音乐文件使用产生最小熵描述的符号集进行分析,我们称之为基本音阶。这使我们能够通过开发以下方法来创建一个表示音乐作品的新空间:(a) 一种从原始观察尺度调整文本描述到任意选择的尺度的方法,(b) 一种基于符号频率分布形状来建模任何文本描述结构的方法,以及(c) 高阶熵的概念,即与频率排序符号分布偏离完美齐夫分布的偏差相关的熵。我们将这个多样性指数称为“二阶熵”。将这些方法应用于各种音乐作品表明,“符号特定多样性-熵”空间和“二阶熵”空间如何捕捉到每种音乐类型、风格、作曲家和流派所特有的特征。这些属性在每个音乐类别周围有一些聚类。这些方法使我们能够在这个空间中可视化学术音乐的历史轨迹,从中世纪到当代学术音乐。我们表明,使用熵、符号频率分布和特定符号多样性来描述音乐结构可以使我们能够描述音乐的传统和流行表达方式。这些分类技术有望在其他学科中用于模式识别和机器学习。