Graduate School of Nanobioscience, Yokohama City University, 22- 2 Seto, Yokohama, Kanagawa 236-0027, Japan.
Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
Plant Cell Physiol. 2017 Nov 1;58(11):1857-1867. doi: 10.1093/pcp/pcx154.
In CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9)-mediated genome editing in plants, Streptococcus pyogenes Cas9 (SpCas9) protein and the required guide RNA (gRNA) are, in most cases, expressed from a stably integrated transgene. Generally, SpCas9 protein is expressed from an RNA polymerase (pol) II promoter, while gRNA is expressed from a pol III promoter. However, pol III promoters have not been much characterized other than in model plants, making it difficult to select appropriate promoters for specific applications, while pol II transcripts have to be processed to generate functional gRNAs. Recently, successful processing of a pol II transcript into functional gRNAs using ribozyme or Csy4-RNA cleavage systems has been demonstrated. Here, we show that functional gRNAs can be efficiently processed using SpCas9 protein and plant endogenous RNA cleavage systems without the need for a specific RNA processing system. In our system, SpCas9 RNA and gRNA are both transcribed as a single RNA using a single pol II promoter; translated SpCas9 protein can be bound to this RNA and, finally, extra RNA sequences are trimmed by plant RNA processing systems to form a functional SpCas9-gRNA complex. The efficiency of targeted mutagenesis using our novel SpCas9-gRNA fused system was comparable with that of the SpCas9-gRNA system with ribozyme sequence, achieving rates of up to 100% in rice. Our results could be useful in developing stable SpCas9-gRNA expression systems and in RNA virus vector-mediated genome editing systems in plants.
在植物的 CRISPR/Cas9(成簇规律间隔短回文重复/CRISPR 相关蛋白 9)介导的基因组编辑中,大多数情况下,酿脓链球菌 Cas9(SpCas9)蛋白和所需的向导 RNA(gRNA)是由稳定整合的转基因表达的。通常,SpCas9 蛋白由 RNA 聚合酶(pol)II 启动子表达,而 gRNA 由 pol III 启动子表达。然而,除了模式植物之外,pol III 启动子的特征并不明显,这使得难以针对特定应用选择合适的启动子,而 pol II 转录物必须经过加工才能产生功能性 gRNA。最近,已经证明使用核酶或 Csy4-RNA 切割系统可以成功地将 pol II 转录物加工成功能性 gRNA。在这里,我们表明,功能性 gRNA 可以使用 SpCas9 蛋白和植物内源性 RNA 切割系统有效地进行加工,而无需特定的 RNA 加工系统。在我们的系统中,SpCas9 RNA 和 gRNA 都使用单个 pol II 启动子转录为单个 RNA;翻译的 SpCas9 蛋白可以与该 RNA 结合,最后,植物 RNA 加工系统会修剪额外的 RNA 序列,形成功能性 SpCas9-gRNA 复合物。使用我们的新型 SpCas9-gRNA 融合系统进行靶向突变的效率与具有核酶序列的 SpCas9-gRNA 系统相当,在水稻中达到了高达 100%的效率。我们的结果可用于开发稳定的 SpCas9-gRNA 表达系统和植物中 RNA 病毒载体介导的基因组编辑系统。