Lamberti F R, Yao Q, Lanco L, Nguyen D T, Esmann M, Fainstein A, Sesin P, Anguiano S, Villafañe V, Bruchhausen A, Senellart P, Favero I, Lanzillotti-Kimura N D
Opt Express. 2017 Oct 2;25(20):24437-24447. doi: 10.1364/OE.25.024437.
Recent experiments demonstrated that GaAs/AlAs based micropillar cavities are promising systems for quantum optomechanics, allowing the simultaneous three-dimensional confinement of near-infrared photons and acoustic phonons in the 18-100 GHz range. Here, we investigate through numerical simulations the optomechanical properties of this new platform. We evidence how the Poisson's ratio and semiconductor/vacuum boundary conditions lead to very distinct features in the mechanical and optical three-dimensional confinement. We find a strong dependence of the mechanical quality factor and strain distribution on the micropillar radius, in great contrast to what is predicted and observed in the optical domain. The derived optomechanical coupling constants g reach ultra-large values in the 10 rad/s range.
最近的实验表明,基于砷化镓/砷化铝的微柱腔是量子光力学中很有前景的系统,能够在18 - 100吉赫兹范围内同时对近红外光子和声子进行三维限制。在此,我们通过数值模拟研究了这个新平台的光机械特性。我们证明了泊松比和半导体/真空边界条件如何在机械和光学三维限制中导致非常不同的特征。我们发现机械品质因数和应变分布强烈依赖于微柱半径,这与光学领域的预测和观察结果形成了极大的反差。推导出的光机械耦合常数g在10弧度/秒范围内达到超大值。