Sharma Ronesh, Bayarjargal Maitsetseg, Tsunoda Tatsuhiko, Patil Ashwini, Sharma Alok
Department of Electronics Engineering, Fiji National University, Suva, Fiji; Department of Engineering and Physics, the University of the South Pacific, Suva, Fiji.
Department of Health Science, Fiji National University, Fiji.
J Theor Biol. 2018 Jan 21;437:9-16. doi: 10.1016/j.jtbi.2017.10.015. Epub 2017 Oct 16.
Intrinsically Disordered Proteins (IDPs) lack stable tertiary structure and they actively participate in performing various biological functions. These IDPs expose short binding regions called Molecular Recognition Features (MoRFs) that permit interaction with structured protein regions. Upon interaction they undergo a disorder-to-order transition as a result of which their functionality arises. Predicting these MoRFs in disordered protein sequences is a challenging task.
In this study, we present MoRFpred-plus, an improved predictor over our previous proposed predictor to identify MoRFs in disordered protein sequences. Two separate independent propensity scores are computed via incorporating physicochemical properties and HMM profiles, these scores are combined to predict final MoRF propensity score for a given residue. The first score reflects the characteristics of a query residue to be part of MoRF region based on the composition and similarity of assumed MoRF and flank regions. The second score reflects the characteristics of a query residue to be part of MoRF region based on the properties of flanks associated around the given residue in the query protein sequence. The propensity scores are processed and common averaging is applied to generate the final prediction score of MoRFpred-plus.
Performance of the proposed predictor is compared with available MoRF predictors, MoRFchibi, MoRFpred, and ANCHOR. Using previously collected training and test sets used to evaluate the mentioned predictors, the proposed predictor outperforms these predictors and generates lower false positive rate. In addition, MoRFpred-plus is a downloadable predictor, which makes it useful as it can be used as input to other computational tools.
https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus:-Download.
内在无序蛋白(IDP)缺乏稳定的三级结构,但它们积极参与执行各种生物学功能。这些IDP会暴露称为分子识别特征(MoRF)的短结合区域,从而允许与结构化蛋白质区域相互作用。相互作用时,它们会经历从无序到有序的转变,从而产生其功能。预测无序蛋白质序列中的这些MoRF是一项具有挑战性的任务。
在本研究中,我们提出了MoRFpred-plus,这是一种比我们之前提出的预测器有所改进的预测器,用于识别无序蛋白质序列中的MoRF。通过结合物理化学性质和HMM图谱计算两个独立的倾向得分,将这些得分结合起来预测给定残基的最终MoRF倾向得分。第一个得分基于假定的MoRF和侧翼区域的组成和相似性,反映查询残基作为MoRF区域一部分的特征。第二个得分基于查询蛋白质序列中给定残基周围侧翼的性质,反映查询残基作为MoRF区域一部分的特征。对倾向得分进行处理并应用普通平均法生成MoRFpred-plus的最终预测得分。
将所提出的预测器的性能与现有的MoRF预测器MoRFchibi、MoRFpred和ANCHOR进行比较。使用先前收集的用于评估上述预测器的训练集和测试集,所提出的预测器优于这些预测器,并产生较低的假阳性率。此外,MoRFpred-plus是一个可下载的预测器,这使其很有用,因为它可以用作其他计算工具的输入。
https://github.com/roneshsharma/MoRFpred-plus/wiki/MoRFpred-plus:-Download。