Suppr超能文献

OPAL:预测无序蛋白质序列中的 MoRF 区域。

OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.

机构信息

School of Engineering and Physics, The University of the South Pacific, Suva, Fiji.

School of Electrical and Electronics Engineering, Fiji National University, Suva, Fiji.

出版信息

Bioinformatics. 2018 Jun 1;34(11):1850-1858. doi: 10.1093/bioinformatics/bty032.

Abstract

MOTIVATION

Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues.

RESULTS

OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/.

CONTACT

ashwini@hgc.jp or alok.sharma@griffith.edu.au.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

无规则蛋白质缺乏稳定的三维结构,在执行各种生物功能方面发挥着关键作用。位于长无序区域内的分子识别特征(MoRFs)是其生物功能的关键。从无序蛋白质序列中计算识别这些 MoRFs 是一项具有挑战性的任务。在这项研究中,我们提出了一种新的 MoRF 预测器 OPAL,用于识别无序蛋白质序列中的 MoRFs。OPAL 利用两种独立的信息来源,这些信息是使用不同的组件预测器计算得出的。分数使用常见的平均方法进行处理和组合。第一个分数是使用组件 MoRF 预测器计算得出的,该预测器使用 MoRF 和非 MoRF 区域的组成和序列相似性来检测 MoRFs。第二个分数是使用无规则蛋白质序列的半球暴露(HSE)、溶剂可及表面积(ASA)和骨架角度信息计算得出的,使用 MoRF 侧翼周围氨基酸特性的信息来区分 MoRF 和非 MoRF 残基。

结果

使用先前用于评估 MoRF 预测器、MoRFpred、MoRFchibi 和 MoRFchibi-web 的测试集来评估 OPAL。结果表明,OPAL 优于所有现有的 MoRF 预测器,是 MoRF 预测中最准确的预测器。它可在 http://www.alok-ai-lab.com/tools/opal/ 获得。

联系信息

ashwini@hgc.jpalok.sharma@griffith.edu.au

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验