From the ‡Division of Biological Chemistry and Drug Discovery and.
§Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK.
Mol Cell Proteomics. 2017 Dec;16(12):2254-2267. doi: 10.1074/mcp.O117.068122. Epub 2017 Oct 17.
A disproportionate number of predicted proteins from the genome sequence of the protozoan parasite , an important human and animal pathogen, are hypothetical proteins of unknown function. This paper describes a protein correlation profiling mass spectrometry approach, using two size exclusion and one ion exchange chromatography systems, to derive sets of predicted protein complexes in this organism by hierarchical clustering and machine learning methods. These hypothesis-generating proteomic data are provided in an open access online data visualization environment (http://134.36.66.166:8083/complex_explorer). The data can be searched conveniently via a user friendly, custom graphical interface. We provide examples of both potential new subunits of known protein complexes and of novel trypanosome complexes of suggested function, contributing to improving the functional annotation of the trypanosome proteome. Data are available via ProteomeXchange with identifier PXD005968.
原核生物寄生虫基因组序列中预测的蛋白数量不成比例,这些蛋白大多是功能未知的假设蛋白。本文描述了一种使用两种排阻层析和一种离子交换层析系统的蛋白相关谱质谱分析方法,通过层次聚类和机器学习方法,得出该生物中预测蛋白复合物的集合。这些生成假说的蛋白质组学数据以开放访问的在线数据可视化环境提供(http://134.36.66.166:8083/complex_explorer)。可以通过用户友好的自定义图形界面方便地搜索数据。我们提供了已知蛋白复合物的潜在新亚基和假设功能的新型锥虫复合物的例子,有助于提高锥虫蛋白质组的功能注释。数据可通过 ProteomeXchange 标识符 PXD005968 获取。