Manenti Riccardo, Kockum Anton F, Patterson Andrew, Behrle Tanja, Rahamim Joseph, Tancredi Giovanna, Nori Franco, Leek Peter J
Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU, Oxford, UK.
Center for Emergent Matter Science, RIKEN, Saitama, 351-0198, Japan.
Nat Commun. 2017 Oct 17;8(1):975. doi: 10.1038/s41467-017-01063-9.
The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.
对包含机械谐振器的量子器件进行的实验研究,在宏观层面的量子力学研究中开辟了新的领域。最近有研究表明,表面声波(SAW)能够通过压电方式与超导量子比特耦合,并被限制在量子 regime 下的高品质法布里 - 珀罗腔中。在此,我们展示了一种器件的测量结果,该器件中一个超导量子比特与一个 SAW 腔耦合,实现了腔量子电动力学的表面声学版本。我们通过测量两个系统之间的交流斯塔克位移来确定耦合强度,这与理论模型相符。这种量子声学动力学架构可用于开发新型量子声学器件,其中量子信息存储在捕获的片上声波包中,并且由于机械波速度慢 10 倍,能够以纯电磁信号无法实现的方式进行操控。在这项工作中,马内蒂等人展示了一种器件的测量结果,其中一个可调谐的 Transmon 量子比特通过压电方式与一个表面声波腔耦合,实现了电路量子声学动力学架构。这可用于开发新型量子声学器件。