Suppr超能文献

通过受激发射拉曼散射显微镜对癌细胞上皮-间充质转化过程中的代谢变化进行生物正交化学成像。

Bioorthogonal chemical imaging of metabolic changes during epithelial-mesenchymal transition of cancer cells by stimulated Raman scattering microscopy.

机构信息

Columbia University, Department of Chemistry, New York, New York, United States.

Columbia University, Kavli Institute for Brain Science, New York, New York, United States.

出版信息

J Biomed Opt. 2017 Oct;22(10):1-7. doi: 10.1117/1.JBO.22.10.106010.

Abstract

Study of metabolic changes during epithelial-mesenchymal transition (EMT) of cancer cells is important for basic understanding and therapeutic management of cancer progression. We here used metabolic labeling and stimulated Raman scattering (SRS) microscopy, a strategy of bioorthogonal chemical imaging, to directly visualize changes in anabolic metabolism during cancer EMT at a single-cell level. MCF-7 breast cancer cell is employed as a model system. Four types of metabolites (amino acids, glucose, fatty acids, and choline) are labeled with either deuterium or alkyne (C≡C) tag. Their intracellular incorporations into MCF-7 cells before or after EMT are visualized by SRS imaging targeted at the signature vibration frequency of C-D or C≡C bonds. Overall, after EMT, anabolism of amino acids, glucose, and choline is less active, reflecting slower protein and membrane synthesis in mesenchymal cells. Interestingly, we also observed less incorporation of glucose and palmitate acids into membrane lipids, but more of them into lipid droplets in mesenchymal cells. This result indicates that, although mesenchymal cells synthesize fewer membrane lipids, they are actively storing energy into lipid droplets, either through de novo lipogenesis from glucose or direct scavenging of exogenous free fatty acids. Hence, metabolic labeling coupled with SRS can be a straightforward method in imaging cancer metabolism.

摘要

研究癌细胞上皮-间充质转化(EMT)过程中的代谢变化对于深入了解和治疗癌症进展具有重要意义。在这里,我们使用代谢标记和受激拉曼散射(SRS)显微镜,这是一种生物正交化学成像策略,直接在单细胞水平上可视化癌症 EMT 过程中合成代谢的变化。我们选择 MCF-7 乳腺癌细胞作为模型系统。使用氘或炔(C≡C)标记四种代谢物(氨基酸、葡萄糖、脂肪酸和胆碱)。通过靶向 C-D 或 C≡C 键特征振动频率的 SRS 成像,观察 EMT 前后 MCF-7 细胞内的掺入情况。总的来说,EMT 后,氨基酸、葡萄糖和胆碱的合成代谢活性降低,反映出间充质细胞中蛋白质和膜合成较慢。有趣的是,我们还观察到葡萄糖和棕榈酸进入膜脂质的掺入减少,但更多的葡萄糖和棕榈酸进入间充质细胞的脂滴。这一结果表明,尽管间充质细胞合成的膜脂质较少,但它们仍在积极地将能量储存到脂滴中,这可能是通过葡萄糖从头合成脂肪或直接从外源性游离脂肪酸中摄取。因此,代谢标记与 SRS 相结合可以成为一种直观的癌症代谢成像方法。

相似文献

2
Quantitative Imaging of Lipid Synthesis and Lipolysis Dynamics in Caenorhabditis elegans by Stimulated Raman Scattering Microscopy.
Anal Chem. 2019 Feb 5;91(3):2279-2287. doi: 10.1021/acs.analchem.8b04875. Epub 2019 Jan 10.
3
A specific lipid metabolic profile is associated with the epithelial mesenchymal transition program.
Biochim Biophys Acta Mol Cell Biol Lipids. 2019 Mar;1864(3):344-357. doi: 10.1016/j.bbalip.2018.12.011. Epub 2018 Dec 19.
4
Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes.
Acc Chem Res. 2016 Aug 16;49(8):1494-502. doi: 10.1021/acs.accounts.6b00210. Epub 2016 Aug 3.
5
Expanding the Range of Bioorthogonal Tags for Multiplex Stimulated Raman Scattering Microscopy.
Angew Chem Int Ed Engl. 2023 Nov 27;62(48):e202311530. doi: 10.1002/anie.202311530. Epub 2023 Oct 27.
6
Direct visualization of de novo lipogenesis in single living cells.
Sci Rep. 2014 Oct 29;4:6807. doi: 10.1038/srep06807.
8
9
Imaging chemistry inside living cells by stimulated Raman scattering microscopy.
Methods. 2017 Sep 1;128:119-128. doi: 10.1016/j.ymeth.2017.07.020. Epub 2017 Jul 23.
10
Molecular monitoring of epithelial-to-mesenchymal transition in breast cancer cells by means of Raman spectroscopy.
Biochim Biophys Acta. 2014 Sep;1843(9):1785-95. doi: 10.1016/j.bbamcr.2014.04.012. Epub 2014 Apr 18.

引用本文的文献

1
Exploring the role of EMT in ovarian cancer progression using a multiscale mathematical model.
NPJ Syst Biol Appl. 2025 Apr 17;11(1):36. doi: 10.1038/s41540-025-00508-y.
3
Biomedical applications, perspectives and tag design concepts in the cell - silent Raman window.
RSC Chem Biol. 2024 Feb 12;5(4):273-292. doi: 10.1039/d3cb00217a. eCollection 2024 Apr 3.
5
Indication of high lipid content in epithelial-mesenchymal transitions of breast tissues.
Sci Rep. 2021 Feb 5;11(1):3250. doi: 10.1038/s41598-021-81426-x.
8
Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup.
Chem Phys Lipids. 2020 Oct;232:104971. doi: 10.1016/j.chemphyslip.2020.104971. Epub 2020 Sep 6.
9
Mammalian cell and tissue imaging using Raman and coherent Raman microscopy.
Wiley Interdiscip Rev Syst Biol Med. 2020 Nov;12(6):e1501. doi: 10.1002/wsbm.1501. Epub 2020 Jul 19.
10
Kinetic Analysis of Lipid Metabolism in Breast Cancer Cells via Nonlinear Optical Microscopy.
Biophys J. 2020 Jul 21;119(2):258-264. doi: 10.1016/j.bpj.2020.06.007. Epub 2020 Jun 12.

本文引用的文献

1
Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells.
Cell Stem Cell. 2017 Mar 2;20(3):303-314.e5. doi: 10.1016/j.stem.2016.11.004. Epub 2016 Dec 29.
5
Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes.
Acc Chem Res. 2016 Aug 16;49(8):1494-502. doi: 10.1021/acs.accounts.6b00210. Epub 2016 Aug 3.
6
In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy.
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):69-93. doi: 10.1146/annurev-anchem-071015-041627.
8
Exogenous Fatty Acids Are the Preferred Source of Membrane Lipids in Proliferating Fibroblasts.
Cell Chem Biol. 2016 Apr 21;23(4):483-93. doi: 10.1016/j.chembiol.2016.03.007. Epub 2016 Mar 31.
9
Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells.
PLoS One. 2016 Jan 25;11(1):e0147717. doi: 10.1371/journal.pone.0147717. eCollection 2016.
10
The Warburg Effect: How Does it Benefit Cancer Cells?
Trends Biochem Sci. 2016 Mar;41(3):211-218. doi: 10.1016/j.tibs.2015.12.001. Epub 2016 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验