Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri, 63130 United States.
State Key Laboratory for Mineral Deposits Research, Nanjing University , Nanjing, P.R. China.
Environ Sci Technol. 2017 Nov 7;51(21):12416-12423. doi: 10.1021/acs.est.7b04097. Epub 2017 Oct 18.
The reaction of manganese oxides with Cr(III)-bearing solids in soils and sediments can lead to the natural production of Cr(VI) in groundwater. Building on previous knowledge of MnO as an oxidant for Cr(III)-containing solids, this study systematically evaluated the rates and mechanisms of the oxidation of Cr(III) in iron oxides by δ-MnO. The Fe/Cr ratio (x = 0.055-0.23 in CrFe(OH)) and pH (5-9) greatly influenced the Cr(VI) production rates by controlling the solubility of Cr(III) in iron oxides. We established a quantitative relationship between Cr(VI) production rates and Cr(III) solubility of CrFe(OH), which can help predict Cr(VI) production rates at different conditions. The adsorption of Cr(VI) and Mn(II) on solids shows a typical pH dependence for anions and cations. A multichamber reactor was used to assess the role of solid-solid contact in CrFe(OH)-MnO interactions, which eliminates the contact of the two solids while still allowing aqueous species transport across a permeable membrane. Cr(VI) production rates were much lower in multichamber than in completely mixed batch experiments, indicating that the redox interaction is accelerated by mixing of the solids. Our results suggest that soluble Cr(III) released from CrFe(OH) solids to aqueous solution can migrate to MnO surfaces where it is oxidized.
土壤和沉积物中锰氧化物与含铬固体的反应会导致地下水中自然生成六价铬。本研究基于 MnO 可作为含铬固体氧化剂的先前知识,系统评估了 δ-MnO 对氧化铁中 Cr(III)的氧化速率和机制。Fe/Cr 比(x = 0.055-0.23 在 CrFe(OH)中)和 pH 值(5-9)通过控制氧化铁中 Cr(III)的溶解度极大地影响 Cr(VI)的生成速率。我们建立了 Cr(VI)生成速率与 CrFe(OH)中 Cr(III)溶解度之间的定量关系,这有助于预测不同条件下 Cr(VI)的生成速率。Cr(VI)和 Mn(II)在固体上的吸附表现出典型的阴离子和阳离子 pH 依赖性。多室反应器用于评估固-固接触在 CrFe(OH)-MnO 相互作用中的作用,该反应器消除了两种固体的接触,同时仍允许水相物质通过可渗透膜进行传输。在多室反应器中,Cr(VI)的生成速率远低于完全混合批量实验中的生成速率,这表明混合可加速氧化还原反应。我们的结果表明,从 CrFe(OH)固体释放到水溶液中的可溶性 Cr(III)可以迁移到 MnO 表面,在那里被氧化。